我每天进行回归分析。在我的情况下,这通常意味着估计连续和分类预测因子对各种结果的影响。生存分析可能是我执行的最常见的分析。这种分析通常在期刊中以非常方便的方式呈现。这是一个例子:
我想知道是否有人遇到过任何可以公开使用的功能或包:
我知道sjPlot包允许绘制lme4,glm和lm结果。但是没有包允许上面提到的coxph结果和coxph是最常用的回归方法之一。我试图自己创建这样的功能,但没有任何成功。我已经阅读了这篇伟大的帖子:Reproduce table and plot from journal但无法弄清楚如何“概括”代码。
任何建议都非常受欢迎。
编辑我现在将它们组合成一个package on github。我用coxph
,lm
和glm
的输出测试了它。
例:
devtools::install_github("NikNakk/forestmodel")
library("forestmodel")
example(forest_model)
在SO上发布的原始代码(由github包取代):
我专门针对coxph
模型进行了研究,尽管同样的技术可以扩展到其他回归模型,特别是因为它使用broom
包来提取系数。提供的forest_cox
函数以coxph
的输出为参数。 (使用model.frame
提取数据以计算每组中的个体数量并找出因子的参考水平。)它还需要许多格式化参数。返回值是ggplot
,可以打印,保存等。
输出建模在问题中显示的NEJM图上。
library("survival")
library("broom")
library("ggplot2")
library("dplyr")
forest_cox <- function(cox, widths = c(0.10, 0.07, 0.05, 0.04, 0.54, 0.03, 0.17),
colour = "black", shape = 15, banded = TRUE) {
data <- model.frame(cox)
forest_terms <- data.frame(variable = names(attr(cox$terms, "dataClasses"))[-1],
term_label = attr(cox$terms, "term.labels"),
class = attr(cox$terms, "dataClasses")[-1], stringsAsFactors = FALSE,
row.names = NULL) %>%
group_by(term_no = row_number()) %>% do({
if (.$class == "factor") {
tab <- table(eval(parse(text = .$term_label), data, parent.frame()))
data.frame(.,
level = names(tab),
level_no = 1:length(tab),
n = as.integer(tab),
stringsAsFactors = FALSE, row.names = NULL)
} else {
data.frame(., n = sum(!is.na(eval(parse(text = .$term_label), data, parent.frame()))),
stringsAsFactors = FALSE)
}
}) %>%
ungroup %>%
mutate(term = paste0(term_label, replace(level, is.na(level), "")),
y = n():1) %>%
left_join(tidy(cox), by = "term")
rel_x <- cumsum(c(0, widths / sum(widths)))
panes_x <- numeric(length(rel_x))
forest_panes <- 5:6
before_after_forest <- c(forest_panes[1] - 1, length(panes_x) - forest_panes[2])
panes_x[forest_panes] <- with(forest_terms, c(min(conf.low, na.rm = TRUE), max(conf.high, na.rm = TRUE)))
panes_x[-forest_panes] <-
panes_x[rep(forest_panes, before_after_forest)] +
diff(panes_x[forest_panes]) / diff(rel_x[forest_panes]) *
(rel_x[-(forest_panes)] - rel_x[rep(forest_panes, before_after_forest)])
forest_terms <- forest_terms %>%
mutate(variable_x = panes_x[1],
level_x = panes_x[2],
n_x = panes_x[3],
conf_int = ifelse(is.na(level_no) | level_no > 1,
sprintf("%0.2f (%0.2f-%0.2f)", exp(estimate), exp(conf.low), exp(conf.high)),
"Reference"),
p = ifelse(is.na(level_no) | level_no > 1,
sprintf("%0.3f", p.value),
""),
estimate = ifelse(is.na(level_no) | level_no > 1, estimate, 0),
conf_int_x = panes_x[forest_panes[2] + 1],
p_x = panes_x[forest_panes[2] + 2]
)
forest_lines <- data.frame(x = c(rep(c(0, mean(panes_x[forest_panes + 1]), mean(panes_x[forest_panes - 1])), each = 2),
panes_x[1], panes_x[length(panes_x)]),
y = c(rep(c(0.5, max(forest_terms$y) + 1.5), 3),
rep(max(forest_terms$y) + 0.5, 2)),
linetype = rep(c("dashed", "solid"), c(2, 6)),
group = rep(1:4, each = 2))
forest_headings <- data.frame(term = factor("Variable", levels = levels(forest_terms$term)),
x = c(panes_x[1],
panes_x[3],
mean(panes_x[forest_panes]),
panes_x[forest_panes[2] + 1],
panes_x[forest_panes[2] + 2]),
y = nrow(forest_terms) + 1,
label = c("Variable", "N", "Hazard Ratio", "", "p"),
hjust = c(0, 0, 0.5, 0, 1)
)
forest_rectangles <- data.frame(xmin = panes_x[1],
xmax = panes_x[forest_panes[2] + 2],
y = seq(max(forest_terms$y), 1, -2)) %>%
mutate(ymin = y - 0.5, ymax = y + 0.5)
forest_theme <- function() {
theme_minimal() +
theme(axis.ticks.x = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.text.y = element_blank(),
strip.text = element_blank(),
panel.margin = unit(rep(2, 4), "mm")
)
}
forest_range <- exp(panes_x[forest_panes])
forest_breaks <- c(
if (forest_range[1] < 0.1) seq(max(0.02, ceiling(forest_range[1] / 0.02) * 0.02), 0.1, 0.02),
if (forest_range[1] < 0.8) seq(max(0.2, ceiling(forest_range[1] / 0.2) * 0.2), 0.8, 0.2),
1,
if (forest_range[2] > 2) seq(2, min(10, floor(forest_range[2] / 2) * 2), 2),
if (forest_range[2] > 20) seq(20, min(100, floor(forest_range[2] / 20) * 20), 20)
)
main_plot <- ggplot(forest_terms, aes(y = y))
if (banded) {
main_plot <- main_plot +
geom_rect(aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax),
forest_rectangles, fill = "#EFEFEF")
}
main_plot <- main_plot +
geom_point(aes(estimate, y), size = 5, shape = shape, colour = colour) +
geom_errorbarh(aes(estimate,
xmin = conf.low,
xmax = conf.high,
y = y),
height = 0.15, colour = colour) +
geom_line(aes(x = x, y = y, linetype = linetype, group = group),
forest_lines) +
scale_linetype_identity() +
scale_alpha_identity() +
scale_x_continuous(breaks = log(forest_breaks),
labels = sprintf("%g", forest_breaks),
expand = c(0, 0)) +
geom_text(aes(x = x, label = label, hjust = hjust),
forest_headings,
fontface = "bold") +
geom_text(aes(x = variable_x, label = variable),
subset(forest_terms, is.na(level_no) | level_no == 1),
fontface = "bold",
hjust = 0) +
geom_text(aes(x = level_x, label = level), hjust = 0, na.rm = TRUE) +
geom_text(aes(x = n_x, label = n), hjust = 0) +
geom_text(aes(x = conf_int_x, label = conf_int), hjust = 0) +
geom_text(aes(x = p_x, label = p), hjust = 1) +
forest_theme()
main_plot
}
样本数据和图表
pretty_lung <- lung %>%
transmute(time,
status,
Age = age,
Sex = factor(sex, labels = c("Male", "Female")),
ECOG = factor(lung$ph.ecog),
`Meal Cal` = meal.cal)
lung_cox <- coxph(Surv(time, status) ~ ., pretty_lung)
print(forest_cox(lung_cox))
对于“为我编写此代码”问题而言,没有任何努力,您当然有很多具体要求。这不符合您的标准,但也许有人会发现它在基本图形中很有用
中心面板中的图可以是任何东西,只要每行有一个图并且每个图中都有一个类型。 (实际上这不是真的,如果你想要任何一种情节可以进入那个面板,因为它只是一个正常的绘图窗口)。此代码中有三个示例:点,箱形图,线条。
这是输入数据。只是一个通用列表和“标题”的索引比“直接使用回归对象”更好的IMO。
## indices of headers
idx <- c(1,5,7,22)
l <- list('Make/model' = rownames(mtcars),
'No. of\ncycles' = mtcars$cyl,
MPG = mtcars$mpg)
l[] <- lapply(seq_along(l), function(x)
ifelse(seq_along(l[[x]]) %in% idx, l[[x]], paste0(' ', l[[x]])))
# List of 3
# $ Make/model : chr [1:32] "Mazda RX4" " Mazda RX4 Wag" " Datsun 710" " Hornet 4 Drive" ...
# $ No. of
# cycles: chr [1:32] "6" " 6" " 4" " 6" ...
# $ MPG : chr [1:32] "21" " 21" " 22.8" " 21.4" ...
我意识到这段代码会生成一个pdf。我不想把它改成要上传的图像,所以我用imagemagick转换它
## choose the type of plot you want
pl <- c('point','box','line')[1]
## extra (or less) c(bottom, left, top, right) spacing for additions in margins
pad <- c(0,0,0,0)
## default padding
oma <- c(1,1,2,1)
## proportional size of c(left, middle, right) panels
xfig = c(.25,.45,.3)
## proportional size of c(caption, main plot)
yfig = c(.15, .85)
cairo_pdf('~/desktop/pl.pdf', height = 9, width = 8)
x <- l[-3]
lx <- seq_along(x[[1]])
nx <- length(lx)
xcf <- cumsum(xfig)[-length(xfig)]
ycf <- cumsum(yfig)[-length(yfig)]
plot.new()
par(oma = oma, mar = c(0,0,0,0), family = 'serif')
plot.window(range(seq_along(x)), range(lx))
## bars -- see helper fn below
par(fig = c(0,1,ycf,1), oma = par('oma') + pad)
bars(lx)
## caption
par(fig = c(0,1,0,ycf), mar = c(0,0,3,0), oma = oma + pad)
p <- par('usr')
box('plot')
rect(p[1], p[3], p[2], p[4], col = adjustcolor('cornsilk', .5))
mtext('\tFigure I: Some fancy statistical model results.',
adj = 0, font = 2, line = -1)
mtext(paste('\tHere we discuss the fancy graphic that you are currently reading',
'about. We worked really hard on it, and you\n\tshould appreciate',
'our hard work by citing this paper in your next manuscript.'),
adj = 0, line = -3)
## left panel -- select two columns
lp <- l[1:2]
par(fig = c(0,xcf[1],ycf,1), oma = oma + vec(pad, 0, 4))
plot_text(lp, c(1,2),
adj = rep(0:1, c(nx, nx)),
font = vec(1, 3, idx, nx),
col = c(rep(1, nx), vec(1, 'transparent', idx, nx))
) -> at
vtext(unique(at$x), max(at$y) + c(1,1.5), names(lp),
font = 2, xpd = NA, adj = c(0,1))
## right panel -- select three columns
rp <- l[c(2:3,3)]
par(fig = c(tail(xcf, -1),1,ycf,1), oma = oma + vec(pad, 0, 2))
plot_text(rp, c(1,2),
col = c(rep(vec(1, 'transparent', idx, nx), 2),
vec('transparent', 2, idx, nx)),
font = vec(1, 3, idx, nx),
adj = rep(c(NA,NA,1), each = nx)
) -> at
vtext(unique(at$x), max(at$y) + c(1.5,1,1), names(rp),
font = 2, xpd = NA, adj = c(NA, NA, 1), col = c(1,1,2))
## middle panel -- some generic plot
par(new = TRUE, fig = c(xcf[1], xcf[2], ycf, 1),
mar = c(0,2,0,2), oma = oma + vec(pad, 0, c(2,4)))
set.seed(1)
xx <- rev(rnorm(length(lx)))
yy <- rev(lx)
plot(xx, yy, ann = FALSE, axes = FALSE, type = 'n',
panel.first = {
segments(0, 0, 0, nx, lty = 'dashed')
},
panel.last = {
## option 1: points, confidence intervals
if (pl == 'point') {
points(xx, yy, pch = 15, col = vec(1, 2, idx, nx))
segments(xx * .5, yy, xx * 1.5, yy, col = vec(1, 2, idx, nx))
}
## option 2: boxplot, distributions
if (pl == 'box')
boxplot(rnorm(200) ~ rep_len(1:nx, 200), at = nx:1,
col = vec(par('bg'), 2, idx, nx),
horizontal = TRUE, axes = FALSE, add = TRUE)
## option 3: trend lines
if (pl == 'line') {
for (ii in 1:nx) {
n <- sample(40, 1)
wh <- which(nx:1 %in% ii)
lines(cumsum(rep(.1, n)) - 2, wh + cumsum(runif(n, -.2, .2)), xpd = NA,
col = (ii %in% idx) + 1L, lwd = c(1,3)[(ii %in% idx) + 1L])
}
}
## final touches
mtext('HR (95% confidence interval)', font = 2, line = -.5)
axis(1, at = -3:2, tcl = 0.2, mgp = c(0,0,0))
mtext(c('Worse','Better'), side = 1, line = 1, at = c(-4, 3))
try(silent = TRUE, {
## can just replace this with graphics::arrows with minor changes
## i just like the filled ones
rawr::arrows2(-.1, -1.5, -3, size = .5, width = .5)
rawr::arrows2(0.1, -1.5, 2, size = .5, width = .5)
})
}
)
box('outer')
dev.off()
使用这四个辅助函数(参见体内使用示例)
vec <- function(default, replacement, idx, n) {
# vec(1, 0, 2:3, 5); vec(1:5, 0, 2:3)
out <- if (missing(n))
default else rep(default, n)
out[idx] <- replacement
out
}
bars <- function(x, cols = c(NA, grey(.9)), horiz = TRUE) {
# plot(1:10, type = 'n'); bars(1:10)
p <- par('usr')
cols <- vec(cols[1], cols[2], which(!x %% 2), length(x))
x <- rev(x) + 0.5
if (horiz)
rect(p[1], x - 1L, p[2], x, border = NA, col = rev(cols), xpd = NA) else
rect(x - 1L, p[3], x, p[4], border = NA, col = rev(cols), xpd = NA)
invisible()
}
vtext <- function(...) {Vectorize(text.default)(...); invisible()}
plot_text <- function(x, width = range(seq_along(x)), ...) {
# plot(col(mtcars), row(mtcars), type = 'n'); plot_text(mtcars)
lx <- lengths(x)[1]
rn <- range(seq_along(x))
sx <- (seq_along(x) - 1) / diff(rn) * diff(width) + width[1]
xx <- rep(sx, each = lx)
yy <- rep(rev(seq.int(lx)), length(x))
vtext(xx, yy, unlist(x), ..., xpd = NA)
invisible(list(x = sx, y = rev(seq.int(lx))))
}