我正在尝试使用 colab 中的 ScispaCy 构建 NER 临床数据模型。我已经安装了这样的软件包。
!pip install spacy
!pip install scispacy
!pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.2.4/en_core_sci_md-0.2.4.tar.gz #pip install <Model URL>```
然后我使用
导入了两者import scispacy
import spacy
import en_core_sci_md
然后使用以下代码来显示句子和实体
nlp = spacy.load("en_core_sci_md")
text ="""Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity. They accumulate in tumor-bearing mice and humans with different types of cancer, including hepatocellular carcinoma (HCC)"""
doc = nlp(text)
print(list(doc.sents))
print(doc.ents)
我收到以下错误
OSError: [E050] Can't find model 'en_core_sci_md'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
我不知道为什么会出现这个错误,我遵循了 ScispaCy 官方 GitHub 帖子中的所有代码。任何帮助将不胜感激。 预先感谢。
我希望我还不算太晚......我相信你已经非常接近正确的方法了。
我会分步写下我的答案,你可以选择在哪里停止。
步骤1)
#Install en_core_sci_lg package from the website of spacy (large corpus), but you can also use en_core_sci_md for the medium corpus.
!pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.2.4/en_core_sci_lg-0.2.4.tar.gz
步骤2)
# Import the large dataset
import en_core_sci_lg
步骤3)
# Identify entities
nlp = en_core_sci_lg.load()
doc = nlp(text)
displacy_image = displacy.render(doc, jupyter = True, style = "ent")
步骤4)
#Print only the entities
print(doc.ents)
步骤5)
# Save the result
save_res = [doc.ents]
save_res
步骤6)
#Save the results to a dataframe
df_save_res = pd.DataFrame(save_res)
df_save_res
步骤7)
# In case that you want to visualise the dependency parse
displacy_image = displacy.render(doc, jupyter = True, style = "dep")
━━━━━━━━━━━━━━ 500.6/500.6 MB 3.0 MB/s eta 0:00:00
准备元数据(setup.py)...完成 已满足要求:/usr/local/lib/python3.10/dist-packages (0.5.4) 中的 scispacy 错误:找不到满足安装要求的版本(来自版本:无) 错误:找不到可安装的匹配发行版 我明白了