当我为模型拟合时:
model.fit(X, y, epochs=40, batch_size=32, validation_split=0.2, verbose=2)
它为每个纪元打印一条日志行:
Epoch 1/100
0s - loss: 0.2506 - acc: 0.5750 - val_loss: 0.2501 - val_acc: 0.3750
Epoch 2/100
0s - loss: 0.2487 - acc: 0.6250 - val_loss: 0.2498 - val_acc: 0.6250
Epoch 3/100
0s - loss: 0.2495 - acc: 0.5750 - val_loss: 0.2496 - val_acc: 0.6250
.....
如何按如下所示每 10 个时期打印日志行?
Epoch 10/100
0s - loss: 0.2506 - acc: 0.5750 - val_loss: 0.2501 - val_acc: 0.3750
Epoch 20/100
0s - loss: 0.2487 - acc: 0.6250 - val_loss: 0.2498 - val_acc: 0.6250
Epoch 30/100
0s - loss: 0.2495 - acc: 0.5750 - val_loss: 0.2496 - val_acc: 0.6250
.....
此回调将创建日志文本文件并将其写入您想要的内容:
log_path = "text_file_name.txt" # it will be created automatically
class print_training_on_text_every_10_epochs_Callback(Callback):
def __init__(self, logpath):
self.logpath = logpath
def on_epoch_end(self, epoch, logs=None):
with open(self.logpath, "a") as writefile: # put log_path here
with redirect_stdout(writefile):
if (int(epoch) % 10) == 0:
print(
f"Epoch: {epoch:>3}"
+ f" | Loss: {logs['loss']:.4e}"
+ f" | Accuracy: {logs['accuracy']:.4e}"
+ f" | Validation loss: {logs['val_loss']:.4e}"
+ f" | Validation accuracy: {logs['val_accuracy']:.4e}"
)
writefile.write("\n")
my_callbacks = [
print_training_on_text_every_10_epochs_Callback(logpath=log_path),
]
你想这样称呼它。
model.fit(
training_dataset,
epochs=60,
verbose=0, # Important else it still will print the log.
validation_data=validation_dataset,
callbacks=my_callbacks,
)
文本文件只会在 10 个 epochs 过去后更新
这是我在文本文件上得到的
Epoch: 0 | Loss: 5.3454e+00 | Valid loss: 4.2420e-01
Epoch: 10 | Loss: 3.1342e-02 | Valid loss: 3.4554e-02
Epoch: 20 | Loss: 1.6330e-02 | Valid loss: 2.2512e-02
第一个纪元编号为 0,第二个纪元编号为 1,依此类推。