import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
#dummy data
relative_amount_bad_scores = np.random.rand(1000)
aggregated_score = np.random.choice(
np.arange(1, 11), 1000, p=[0.05, 0.05, 0.1, 0.1, 0.15, 0.15, 0.15, 0.1, 0.1, 0.05]
)
df_dummy = pd.DataFrame({
"relative_amount_of_bad_scores": relative_amount_bad_scores,
"aggregated_score": aggregated_score
})
# Plot
palette = sns.color_palette("RdYlGn", as_cmap=True)
fig, ax = plt.subplots(figsize=(15, 15))
sns.histplot(
data=df_dummy.sort_values('aggregated_score', ascending = True),
x="relative_amount_of_bad_scores",
hue="aggregated_score",
multiple="fill",
ax=ax,
binwidth=0.1,
palette = palette
)
[::-1]
以逆转颜色顺序。
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Dummy data
relative_amount_bad_scores = np.random.rand(1000)
aggregated_score = np.random.choice(
np.arange(1, 11), 1000, p=[0.05, 0.05, 0.1, 0.1, 0.15, 0.15, 0.15, 0.1, 0.1, 0.05]
)
df_dummy = pd.DataFrame({
"relative_amount_of_bad_scores": relative_amount_bad_scores,
"aggregated_score": aggregated_score
})
palette = sns.color_palette("RdYlGn", n_colors=10)[::-1]
fig, ax = plt.subplots(figsize=(15, 15))
sns.histplot(
data=df_dummy.sort_values('aggregated_score', ascending=True),
x="relative_amount_of_bad_scores",
hue="aggregated_score",
multiple="fill",
ax=ax,
binwidth=0.1,
palette=palette
)
plt.show()