我有一个熊猫数据框。
pd.DataFrame({
"category": ["Transport", "Transport : Car", "Transport : Train", "Household", "Household : Utilities", "Household : Utilities : Water", "Household : Utilities : Electric", "Household : Cleaning", "Household : Cleaning : Bathroom", "Household : Cleaning : Kitchen", "Household : Rent", "Living", "Living : Other", "Living : Food", "Living : Something", "Living : Anitsomething"],
"amount": [5000, 4900, 100, 1100, 600, 400, 200, 100, 75, 25, 400, 250, 150, 100, 1000, -1000]
})
类别和子类别用冒号分隔。
我正在尝试按降序(绝对值)顺序对此数据帧进行排序。同时尊重层次分组。即排序后的结果应类似于
Transport 5000
Transport : Car 4900
Transport : Train 100
Household 1600
Household : Utilities 600
Household : Utilities : Water 400
Household : Utilities : Electric 200
Household : Rent 400
Living 250
Living : Something 1000
Living : Antisomething -1000
Living : Other 150
Living : Food 100
我可以以极其低效的方式递归执行此操作。超级慢,但是可以用。
def sort_hierachical(self, full_df, name_column, sort_column, parent="", level=0):
result_df = pd.DataFrame(columns=full_df.columns)
part_df = full_df.loc[(full_df[name_column].str.count(':') == level) & (full_df[name_column].str.startswith(parent)), :]
part_df['abs'] = part_df[sort_column].abs()
part_df = part_df.sort_values('abs', ascending=False)
for _, row in part_df.iterrows():
category = row[name_column]
row_df = pd.DataFrame(columns = full_df.columns).append(row)
child_rows = self.sort_hierachical(full_df, name_column, sort_column, category, level+1)
if not child_rows.empty:
result_df = pd.concat([result_df, row_df], sort=False)
result_df = pd.concat([result_df, child_rows], sort=False)
else:
result_df = pd.concat([result_df, row_df], sort=False)
return result_df
df = self.sort_hierachical(df, "category", "amount")
我的问题:在熊猫中,有没有一种很好的表演者方式来做这种事情。某种排序方式或多索引技巧?
好人缘将解决那些具有挑战性的问题:)
编辑:
这几乎可以工作...但是-1000,1000弄乱了排序顺序。
def _sort_tree_df(self, df, tree_column, sort_column):
sort_key = sort_column + '_abs'
df[sort_key] = df[sort_column].abs()
df.index = pd.MultiIndex.from_frame(df[tree_column].str.split(":").apply(lambda x: [y.strip() for y in x]).apply(pd.Series))
sort_columns = [df[tree_column].values]
sort_columns.append(df[sort_key].values)
for x in range(df.index.nlevels, 0, -1):
group_lvl = list(range(0, x))
sort_columns.append(df.groupby(level=group_lvl)[sort_key].transform('max').values)
sort_indexes = np.lexsort(sort_columns)
df_sorted = df.iloc[sort_indexes[::-1]]
df_sorted.reset_index(drop=True, inplace=True)
df_sorted = df_sorted.drop(sort_key, axis=1)
return df_sorted
Edit2:
好吧,我想我已经设法使其成功了。我仍然很困惑lexsort的工作方式。我通过有经验的反复试验来完成这项工作。如果您了解它,请随时进行解释。也可以随时发布更好的方法。
def _sort_tree_df(self, df, tree_column, sort_column, delimeter=':'):
df.index = pd.MultiIndex.from_frame(df[tree_column].str.split(delimeter).apply(lambda x: [y.strip() for y in x]).apply(pd.Series))
sort_columns = [df[tree_column].values]
sort_columns.append(df[sort_column].abs().values)
for x in range(df.index.nlevels, 0, -1):
group_lvl = list(range(0, x))
sort_columns.append(df.groupby(level=group_lvl)[sort_column].transform('sum').abs().values)
sort_indexes = np.lexsort(sort_columns)
df_sorted = df.iloc[sort_indexes[::-1]]
df_sorted.reset_index(drop=True, inplace=True)
return df_sorted
Edit3:实际上,这并不总是正确排序:(
我不确定我是否完全理解这个问题,但是我认为您应该将列划分为子类别,然后根据所需的层次结构进行值排序。类似以下内容的文件可能会胜任。
使用以下内容创建新列:
for _, row in df.iterrows():
for item, col in zip(row.category.split(':'), ['cat', 'sub_cat', 'sub_sub_cat']):
df.loc[_, col] = item
然后对它们进行排序
df.sort_values(['cat', 'sub_cat', 'sub_sub_cat', 'amount'])
category amount cat sub_cat sub_sub_cat
3 Household 1100 Household NaN NaN
7 Household : Cleaning 100 Household Cleaning NaN
8 Household : Cleaning : Bathroom 75 Household Cleaning Bathroom
9 Household : Cleaning : Kitchen 25 Household Cleaning Kitchen
10 Household : Rent 400 Household Rent NaN
4 Household : Utilities 600 Household Utilities NaN
6 Household : Utilities : Electric 200 Household Utilities Electric
5 Household : Utilities : Water 400 Household Utilities Water
11 Living 250 Living NaN NaN
15 Living : Anitsomething -1000 Living Anitsomething NaN
13 Living : Food 100 Living Food NaN
12 Living : Other 150 Living Other NaN
14 Living : Something 1000 Living Something NaN
0 Transport 5000 Transport NaN NaN
1 Transport : Car 4900 Transport Car NaN
2 Transport : Train 100 Transport Train Na