我正在尝试为我的代理使用 Nividia“https://integrate.api.nvidia.com/v1”上的“meta/llama-3.1-8b-instruct”。
import autogen
config_list = [
{
"model": "meta/llama-3.1-8b-instruct",
"base_url": "https://integrate.api.nvidia.com/v1",
"api_key": "nvapi-API key",
"temperature": 0.2,
"top_p": 0.7,
"max_tokens": 1024,
}
]
llm_config={"config_list": config_list, "seed": 42}
user_proxy = autogen.UserProxyAgent(
name="User_proxy",
system_message="A human admin.",
code_execution_config={
"last_n_messages": 2,
"work_dir": "groupchat",
"use_docker": False,
}, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.
human_input_mode="TERMINATE",
)
climate_activist = autogen.AssistantAgent(
name="climate_activist",
llm_config=llm_config,
system_message="You are a climate activist with vast knowledge on climate change and ways to prevent further climate change."
)
rocket_scientist = autogen.AssistantAgent(
name="rocket_scientist",
llm_config=llm_config,
system_message="You are a rocket scientist with vast knowledge on how to design rockets to be efficient. You also take the effect of your rockets on the climate when designing it."
)
# Create group and group manager
groupchat = autogen.GroupChat(
agents=[user_proxy, climate_activist, rocket_scientist], messages=[], max_round=3)
manager = autogen.GroupChatManager(
groupchat=groupchat, llm_config=llm_config)
# initialize conversations
user_proxy.initiate_chat(
manager, message="firstly tell what LLM, version and baseurl you are using. Discuss on the best way to design rockets to be environmentally friendly and efficient."
)
从输出来看,它没有在 Nividia 上使用正确的模型“meta/llama-3.1-8b-instruct”。
❯ python group_chat.py
User_proxy (to chat_manager):
firstly tell what LLM, version and baseurl you are using. Discuss on the best way to design rockets to be environmentally friendly and efficient.
--------------------------------------------------------------------------------
Next speaker: rocket_scientist
rocket_scientist (to chat_manager):
I'm using the LLaMA (Large Language Model) version 3.3.1, which is a state-of-the-art language model developed by Meta AI. The base URL for this model is `https://huggingface.co/models/llama/3.3.1`.
这里是 Nvidia NIM 提供的示例 Python 代码
from openai import OpenAI
client = OpenAI(
base_url = "https://integrate.api.nvidia.com/v1",
api_key = "nvapi-API Key"
)
completion = client.chat.completions.create(
model="meta/llama-3.1-8b-instruct",
messages=[{"role":"user","content":"who are u"}],
temperature=0.2,
top_p=0.7,
max_tokens=1024,
stream=True
)
for chunk in completion:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
有什么想法吗?
您是否成功将 Autogen 与 NVIDIA NIM 结合使用?如果是这样,你能提供更新吗?谢谢