def update_graph_bar(named_count,**kwargs):
traces = list()
df = pd.DataFrame(list(Message.objects.all().values()))
available_indicators = list(df['content'].unique())
for t in available_indicators:
traces.append(go.Bar(
x=[t],
y=[df[df['content']==t]['timestamp'].count()],
name='{}'.format(t),text=[df[df['content']==t]['timestamp'].count()],
textposition='auto'
))
layout = plotly.graph_objs.Layout(barmode='group',paper_bgcolor='#00FFFF',
plot_bgcolor='rgba(0,0,0,0)',)
return {'data': traces,
'layout': layout}
我有上面的代码,在这里我想介绍一下使用'marker'来进行颜色编码,这样bargraph的颜色应该取决于它的值,随着值的增加,颜色也应该改变。
我假设你要找的是这样的东西。
Plot 1: Plotly express and
其中可以很容易地产生这样的结果。
import plotly.express as px
data = px.data.gapminder()
data_canada = data[data.country == 'Canada']
fig = px.bar(data_canada, x='year', y='pop',
hover_data=['lifeExp', 'gdpPercap'], color='lifeExp',
labels={'pop':'population of Canada'}, height=400)
fig.show()
你可以很容易地将这种方法应用到 plotly. graph_objects中,得到:
Plot 2: go.Bar()
和 'viridis'
代码2。
import plotly.graph_objects as go
fig = go.Figure()
x=[1,2,3]
y=[4,5,6]
z=[12,24,48]
fig.add_trace(go.Bar(x=x, y=y,
marker=dict(color = z,
colorscale='viridis')))
fig.show()
而且你甚至可以应用自己的自定义色阶。
剧情3: 自定义颜色
代码3:
import plotly.graph_objects as go
fig = go.Figure()
x=[1,2,3]
y=[4,5,6]
z=[12,24,48]
customscale=[[0, "rgb(255, 0, 0)"],
[0.1, "rgb(255, 0, 0)"],
[0.9, "rgb(0, 0, 255)"],
[1.0, "rgb(0, 0, 255)"]]
fig.add_trace(go.Bar(x=x, y=y,
marker=dict(color = z,
colorscale=customscale)))
fig.show()
当 code 3
将颜色映射到变量的相对大小。code 4
将向您展示如何将颜色映射到具有指定阈值的绝对值。
图4: 通过变量的绝对值分配颜色
代码4:
import plotly.graph_objects as go
fig = go.Figure()
x=[1,2,3]
y=[25,75, 110]
z=[12,24,48]
def SetColor(y):
if(y >= 100):
return "red"
elif(y >= 50):
return "yellow"
elif(y >= 0):
return "green"
fig.add_trace(go.Bar(x=x, y=y,
marker=dict(color = list(map(SetColor, y)))))
fig.show()