如何在Jupyter笔记本上运行tensorflow-gpu?

问题描述 投票:1回答:1

我正在尝试使用CuDNNLSTM进行深度学习,并在正式文档中找到了安装它的步骤。因此,我创建了一个新的Pycharm项目,并仅添加了tf-gpu库。代码运行速度提高了5倍。

但是当我在Jupyter Notebook上运行相同的代码时,它显示出错误

我尝试测试的代码是一个非常简单的MNIST(大部分步骤已跳过)。

import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
tf.config.experimental.list_physical_devices('GPU')
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train / 255.0
x_test = x_test / 255.0


model = Sequential()

model.add(LSTM(128, input_shape=(x_train.shape[1:]), return_sequences=True))
model.add(Dropout(0.2))

model.add(LSTM(128))
model.add(Dropout(0.2))

model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(10, activation='softmax'))

opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))

错误:

UnknownError:  [_Derived_]  Fail to find the dnn implementation.
     [[{{node CudnnRNN}}]]
     [[sequential_1/lstm_2/StatefulPartitionedCall]] [Op:__inference_distributed_function_10295]

Function call stack:
distributed_function -> distributed_function -> distributed_function
tensorflow keras deep-learning jupyter-notebook cudnn
1个回答
0
投票

我自己解决了这个问题。我注意到我已经从cmd安装了pip的tensorflow和tensorflow-gpu。我都卸载了这两个版本,并且仅安装了tensorflow-gpu版本。它也可以在Jupyter Notebook上正常运行!

© www.soinside.com 2019 - 2024. All rights reserved.