AttributeError:“_MultiProcessingDataLoaderIter”对象没有属性“next”

问题描述 投票:0回答:4

我尝试使用

Torch Dataset and DataLoader
加载数据集,但出现以下错误:

AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute 'next'

我使用的代码是:

class WineDataset(Dataset):

    def __init__(self):
        # Initialize data, download, etc.
        # read with numpy or pandas
        xy = np.loadtxt('./data/wine.csv', delimiter=',', dtype=np.float32, skiprows=1)
        self.n_samples = xy.shape[0]

        # here the first column is the class label, the rest are the features
        self.x_data = torch.from_numpy(xy[:, 1:]) # size [n_samples, n_features]
        self.y_data = torch.from_numpy(xy[:, [0]]) # size [n_samples, 1]

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples

    dataset = WineDataset()
        
    train_loader = DataLoader(dataset=dataset,
                              batch_size=4,
                              shuffle=True,
                              num_workers=2)

我尝试让num_workers=0,仍然有同样的错误。

Python version 3.8.9
PyTorch version 1.13.0
python pytorch torch pytorch-dataloader
4个回答
76
投票

当我尝试调用 next() 方法时,我也遇到了同样的问题

dataiter = iter(dataloader)
data = dataiter.next()

您需要使用以下内容,它可以完美运行:

dataiter = iter(dataloader)
data = next(dataiter)

最后你的代码应该如下所示:

class WineDataset(Dataset):

    def __init__(self):
        # Initialize data, download, etc.
        # read with numpy or pandas
        xy = np.loadtxt('./data/wine.csv', delimiter=',', dtype=np.float32, skiprows=1)
        self.n_samples = xy.shape[0]

        # here the first column is the class label, the rest are the features
        self.x_data = torch.from_numpy(xy[:, 1:]) # size [n_samples, n_features]
        self.y_data = torch.from_numpy(xy[:, [0]]) # size [n_samples, 1]

    # support indexing such that dataset[i] can be used to get i-th sample
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    # we can call len(dataset) to return the size
    def __len__(self):
        return self.n_samples

    dataset = WineDataset()
        
    train_loader = DataLoader(dataset=dataset,
                              batch_size=4,
                              shuffle=True,
                              num_workers=2)

dataiter = iter(dataloader)
data = next(dataiter)

10
投票

在 pytorch 1.12 中语法:

iter(trn_loader).next()

工作正常以及:

next(iter(trn_loader))

从 pytorch 1.13 开始,唯一有效的语法是:

next(iter(trn_loader))

0
投票

于 2023 年 4 月更新 而不是从

iter(trn_loader).next()
更改 到
next(iter(trn_loader))
。我更喜欢解决 pyTorch 版本问题,因为我不知道代码中有多少个
.next()

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 -c pytorch

0
投票

我也面临着同样的问题。我使用的是torch ==2.3版本。 我收到的错误是 RuntimeError: An attempts has made to start a new process before the current process has finish its bootstrapping stage,这表明 Python 中的多处理存在问题。当使用 PyTorch 的 DataLoader 启用多处理时,经常会发生此错误,尤其是在 Windows 系统上。 这对我有用:

类 WineDataset(数据集):

def __init__(self):                
    # data loading
    xy = np.loadtxt('E:\\Github\\Pytorch_beginner\\wine.csv', delimiter = ",", dtype = np.float32, skiprows =1 )
    self.x = torch.from_numpy(xy[:,1:])
    self.y = torch.from_numpy(xy[:,[0]]) # n_samples,1
    self.n_samples = xy.shape[0]

# support indexing such that dataset[i] can be used to get i-th sample
def __getitem__(self,index):
    # dataset[0]
    return self.x[index], self.y[index]

# we can call len(dataset) to return the size     
def __len__(self):
    #len(dataset)
    return self.n_samples  

if name == 'main': 数据集 = WineDataset() dataloader = DataLoader(数据集=数据集,batch_size=4,shuffle=True,num_workers=2) dataiter = iter(数据加载器) 数据 = 下一个(dataiter)

希望这有帮助!

© www.soinside.com 2019 - 2024. All rights reserved.