[朋友,您能帮助我在代码中使用“清除”按钮吗?我创建了按钮,但无法正常工作。当按下“清除”按钮时,我想清除生成的表格和图形。另外,如果使用了过滤器,我希望它们恢复到原来的标准。
library(shiny)
library(ggplot2)
library(rdist)
library(geosphere)
library(kableExtra)
library(readxl)
library(tidyverse)
library(DT)
#database
df<-structure(list(Properties = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9,
+ -23.9, -23.9, -23.9, -23.9, -23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7,
+ -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364,
+ 175, 175, 350, 45.5, 54.6,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350)), class = "data.frame", row.names = c(NA, -35L))
function.clustering<-function(df,k,Filter1,Filter2){
if (Filter1==2){
Q1<-matrix(quantile(df$Waste, probs = 0.25))
Q3<-matrix(quantile(df$Waste, probs = 0.75))
L<-Q1-1.5*(Q3-Q1)
S<-Q3+1.5*(Q3-Q1)
df_1<-subset(df,Waste>L[1])
df<-subset(df_1,Waste<S[1])
}
#cluster
coordinates<-df[c("Latitude","Longitude")]
d<-as.dist(distm(coordinates[,2:1]))
fit.average<-hclust(d,method="average")
#Number of clusters
clusters<-cutree(fit.average, k)
nclusters<-matrix(table(clusters))
df$cluster <- clusters
#Localization
center_mass<-matrix(nrow=k,ncol=2)
for(i in 1:k){
center_mass[i,]<-c(weighted.mean(subset(df,cluster==i)$Latitude,subset(df,cluster==i)$Waste),
weighted.mean(subset(df,cluster==i)$Longitude,subset(df,cluster==i)$Waste))}
coordinates$cluster<-clusters
center_mass<-cbind(center_mass,matrix(c(1:k),ncol=1))
#Coverage
coverage<-matrix(nrow=k,ncol=1)
for(i in 1:k){
aux_dist<-distm(rbind(subset(coordinates,cluster==i),center_mass[i,])[,2:1])
coverage[i,]<-max(aux_dist[nclusters[i,1]+1,])}
coverage<-cbind(coverage,matrix(c(1:k),ncol=1))
colnames(coverage)<-c("Coverage_meters","cluster")
#Sum of Waste from clusters
sum_waste<-matrix(nrow=k,ncol=1)
for(i in 1:k){
sum_waste[i,]<-sum(subset(df,cluster==i)["Waste"])
}
sum_waste<-cbind(sum_waste,matrix(c(1:k),ncol=1))
colnames(sum_waste)<-c("Potential_Waste_m3","cluster")
#Table1
data_table <- Reduce(merge, list(df, coverage, sum_waste))
data_table <- data_table[order(data_table$cluster, as.numeric(data_table$Properties)),]
data_table_1 <- aggregate(. ~ cluster + Coverage_meters + Potential_Waste_m3, data_table[,c(1,7,6,2)], toString)
#Plot1
#Scatter Plot
suppressPackageStartupMessages(library(ggplot2))
df1<-as.data.frame(center_mass)
colnames(df1) <-c("Latitude", "Longitude", "cluster")
g<-ggplot(data=df, aes(x=Longitude, y=Latitude, color=factor(clusters))) + geom_point(aes(x=Longitude, y=Latitude), size = 4)
Centro_View<- g + geom_text(data=df, mapping=aes(x=eval(Longitude), y=eval(Latitude), label=Waste), size=3, hjust=-0.1)+ geom_point(data=df1, mapping=aes(Longitude, Latitude), color= "green", size=4) + geom_text(data=df1, mapping = aes(x=Longitude, y=Latitude, label = 1:k), color = "black", size = 4)
plot1<-print(Centro_View + ggtitle("Scatter Plot") + theme(plot.title = element_text(hjust = 0.5)))
return(list(
"Data" = data_table_1,
"Plot" = plot1
))
}
ui <- fluidPage(
titlePanel("Clustering "),
sidebarLayout(
sidebarPanel(
helpText(h3("Generation of clustering")),
radioButtons("filter1", h3("Waste Potential"),
choices = list("Select all properties" = 1,
"Exclude properties that produce less than L and more than S" = 2),
selected = 1),
tags$hr(),
radioButtons("filter2", h3("Are you satisfied with the solution"),
choices = list("Yes" = 1,
"No" = 2),
selected = 1),
sliderInput("Slider", h3("Number of clusters"),
min = 2, max = 34, value = 8),
tags$hr(),
actionButton("reset", "Clean all"),
downloadButton("downloadData", "Download")),
mainPanel(
tabsetPanel(
tabPanel("Table",DTOutput("tabela")),
tabPanel("Figure",plotOutput("ScatterPlot"))
))))
server <- function(input, output) {
values <- reactiveValues(df = NULL)
Modelclustering<-reactive(function.clustering(df,input$Slider,input$filter1,input$filter2))
output$tabela <- renderDataTable({
data_table_1 <- req(Modelclustering())[[1]]
x <- datatable(data_table_1[order(data_table_1$cluster), c(1, 4, 2, 3)],
options = list(
paging =TRUE,
pageLength = 5,lengthChange=FALSE)
) %>% formatRound(c(3:4), 2)
return(x)
})
output$ScatterPlot <- renderPlot({
Modelclustering()[[2]]
})
}
observeEvent(input$reset,{
values$df <- NULL
})
# Run the application
shinyApp(ui = ui, server = server)
非常感谢您的朋友!
@ Jovani-
要重置单选按钮,请在updateRadioButtons
中使用server
。
您将为此需要session
,请确保这是您的server
函数中的参数(在下面添加)。
还请确保您的observeEvent
是inside您的server
函数(我想是因为您说过它在起作用)。
server <- function(input, output, session) {
values <- reactiveValues(df = NULL)
Modelclustering<-reactive(function.clustering(df,input$Slider,input$filter1,input$filter2))
output$tabela <- renderDataTable({
data_table_1 <- req(Modelclustering())[[1]]
x <- datatable(data_table_1[order(data_table_1$cluster), c(1, 4, 2, 3)],
options = list(
paging =TRUE,
pageLength = 5,lengthChange=FALSE)
) %>% formatRound(c(3:4), 2)
return(x)
})
output$ScatterPlot <- renderPlot({
Modelclustering()[[2]]
})
observeEvent(input$reset,{
values$df <- NULL
updateRadioButtons(session, "filter1", selected = 1)
updateRadioButtons(session, "filter2", selected = 1)
})
}