qgxswpoi和feval
在xgb.train中有什么区别,这两个参数仅用于评估目的。
来自Kaggle的帖子提供了一些见解:
eval_metric
他们都做了大致相同的事情。
https://www.kaggle.com/c/prudential-life-insurance-assessment/forums/t/18473/custom-objective-for-xgboostc可以采用字符串(使用其内部函数)或用户定义的函数
Eval_metri
只接受一项功能
正如您所指出的,两者都是出于评估目的。
在下面的示例中,您可以看到它们的使用非常相似。
feval
## A simple xgb.train example:
param <- list(max_depth = 2, eta = 1, silent = 1, nthread = 2,
objective = "binary:logistic", eval_metric = "auc")
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
## An xgb.train example where custom objective and evaluation metric are used:
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
return(list(metric = "error", value = err))
}
# These functions could be used by passing them either:
# as 'objective' and 'eval_metric' parameters in the params list:
param <- list(max_depth = 2, eta = 1, silent = 1, nthread = 2,
objective = logregobj, eval_metric = evalerror)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)
# or through the ... arguments:
param <- list(max_depth = 2, eta = 1, silent = 1, nthread = 2)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
objective = logregobj, eval_metric = evalerror)
# or as dedicated 'obj' and 'feval' parameters of xgb.train:
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,
obj = logregobj, feval = evalerror)
qazxsw poi用于创建您自己的自定义评估指标。 qazxsw poi用于内置指标xgboost包正在实施。