我做了一个看起来像这样的情节
我想关闭 y 轴上的刻度标签。为此,我正在使用
plt.tick_params(labelleft=False, left=False)
现在的剧情是这样的。即使标签已关闭,规模
1e67
仍然存在。
关闭比例
1e67
会让情节看起来更好。我该怎么做?
seaborn
用于绘制绘图,但它只是 matplotlib
的高级 API。
matplotlib
方法。.set()
。.set(yticklabels=[])
应删除刻度标签。
.set_title()
,这不起作用,但您可以使用 .set(title='')
sns.boxplot(...).set(xticklabels=[])
,因为虽然这有效,但对象类型已从 matplotlib.axes._axes.Axes
的 sns.boxplot(...)
更改为 list
。.set(ylabel=None)
应删除轴标签。.tick_params(left=False)
将去除蜱虫。python 3.11
、pandas 1.5.2
、matplotlib 3.6.2
、seaborn 0.12.1
import seaborn as sns
import matplotlib.pyplot as plt
# load data
exercise = sns.load_dataset('exercise')
pen = sns.load_dataset('penguins')
# create figures
fig, ax = plt.subplots(2, 1, figsize=(8, 8))
# plot data
g1 = sns.boxplot(x='time', y='pulse', hue='kind', data=exercise, ax=ax[0])
g2 = sns.boxplot(x='species', y='body_mass_g', hue='sex', data=pen, ax=ax[1])
plt.show()
fig, ax = plt.subplots(2, 1, figsize=(8, 8))
g1 = sns.boxplot(x='time', y='pulse', hue='kind', data=exercise, ax=ax[0])
g1.set(yticklabels=[]) # remove the tick labels
g1.set(title='Exercise: Pulse by Time for Exercise Type') # add a title
g1.set(ylabel=None) # remove the axis label
g2 = sns.boxplot(x='species', y='body_mass_g', hue='sex', data=pen, ax=ax[1])
g2.set(yticklabels=[])
g2.set(title='Penguins: Body Mass by Species for Gender')
g2.set(ylabel=None) # remove the y-axis label
g2.tick_params(left=False) # remove the ticks
plt.tight_layout()
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# sinusoidal sample data
sample_length = range(1, 1+1) # number of columns of frequencies
rads = np.arange(0, 2*np.pi, 0.01)
data = np.array([(np.cos(t*rads)*10**67) + 3*10**67 for t in sample_length])
df = pd.DataFrame(data.T, index=pd.Series(rads.tolist(), name='radians'), columns=[f'freq: {i}x' for i in sample_length])
df.reset_index(inplace=True)
# plot
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot('radians', 'freq: 1x', data=df)
# or skip the previous two lines and plot df directly
# ax = df.plot(x='radians', y='freq: 1x', figsize=(8, 8), legend=False)
# plot
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot('radians', 'freq: 1x', data=df)
# or skip the previous two lines and plot df directly
# ax = df.plot(x='radians', y='freq: 1x', figsize=(8, 8), legend=False)
ax.set(yticklabels=[]) # remove the tick labels
ax.tick_params(left=False) # remove the ticks