Udacity深度学习,作业3,第3部分:Tensorflow辍学功能

问题描述 投票:2回答:2

我现在正在进行Udacity深度学习课程的作业3。我已经完成了大部分工作并且它正在工作但是我注意到问题3,即使用“dropout”和tensorflow,似乎会降低我的性能而不是改进它。

所以我觉得我做错了什么。我会把我的完整代码放在这里。如果有人能向我解释如何正确使用辍学,我会很感激。 (或者确认我正确使用它并且在这种情况下它没有帮助。)。它将准确度从超过94%(没有辍学)下降到91.5%。如果您不使用L2正则化,则降级甚至更大。

def create_nn(dataset, weights_hidden, biases_hidden, weights_out, biases_out):
    # Original layer
    logits = tf.add(tf.matmul(tf_train_dataset, weights_hidden), biases_hidden)
    # Drop Out layer 1
    logits = tf.nn.dropout(logits, 0.5)
    # Hidden Relu layer
    logits = tf.nn.relu(logits)
    # Drop Out layer 2
    logits = tf.nn.dropout(logits, 0.5)
    # Output: Connect hidden layer to a node for each class
    logits = tf.add(tf.matmul(logits, weights_out), biases_out)
    return logits


# Create model
batch_size = 128
hidden_layer_size = 1024
beta = 1e-3

graph = tf.Graph()
with graph.as_default():
    # Input data. For the training data, we use a placeholder that will be fed
    # at run time with a training minibatch.
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    # Variables.
    weights_hidden = tf.Variable(
        #tf.truncated_normal([image_size * image_size, num_labels]))
        tf.truncated_normal([image_size * image_size, hidden_layer_size]))
    #biases = tf.Variable(tf.zeros([num_labels]))
    biases_hidden = tf.Variable(tf.zeros([hidden_layer_size]))

    weights_out = tf.Variable(tf.truncated_normal([hidden_layer_size, num_labels]))
    biases_out = tf.Variable(tf.zeros([num_labels]))


    # Training computation.
    #logits = tf.matmul(tf_train_dataset, weights_out) + biases_out
    logits = create_nn(tf_train_dataset, weights_hidden, biases_hidden, weights_out, biases_out)

    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
    loss += beta * (tf.nn.l2_loss(weights_hidden) + tf.nn.l2_loss(weights_out))

    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    #valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights_out) + biases_out)
    #test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights_out) + biases_out)
    valid_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden) + biases_hidden), weights_out) + biases_out)
    test_prediction = tf.nn.softmax(tf.matmul(tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden) + biases_hidden), weights_out) + biases_out)


num_steps = 10000

with tf.Session(graph=graph) as session:
  tf.global_variables_initializer().run()
  print("Initialized")
  for step in range(num_steps):
    # Pick an offset within the training data, which has been randomized.
    # Note: we could use better randomization across epochs.
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
    #offset = (step * batch_size) % (3*128 - batch_size)
    #print(offset)
    # Generate a minibatch.
    batch_data = train_dataset[offset:(offset + batch_size), :]
    batch_labels = train_labels[offset:(offset + batch_size), :]
    # Prepare a dictionary telling the session where to feed the minibatch.
    # The key of the dictionary is the placeholder node of the graph to be fed,
    # and the value is the numpy array to feed to it.
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
    _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict)

    if (step % 500 == 0):
      print("Minibatch loss at step %d: %f" % (step, l))
      print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
      print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))

  print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
python-3.x tensorflow deep-learning anaconda
2个回答
3
投票

你需要在推理期间关闭辍学。起初可能并不明显,但是在NN架构中硬丢码是硬编码的事实意味着它会在推理期间影响测试数据。您可以通过创建占位符keep_prob来避免这种情况,而不是直接提供值0.5。例如:

keep_prob = tf.placeholder(tf.float32)
logits = tf.nn.dropout(logits, keep_prob)

要在训练期间打开辍学,请将keep_prob值设置为0.5:

feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, keep_prob: 0.5}

在推理/评估期间,您应该可以执行以下操作,在keep_prob中将eval设置为1.0:

accuracy.eval(feed_dict={x: test_prediction, y_: test_labels, keep_prob: 1.0}

编辑:

由于问题似乎并不是在推理中使用了辍学,下一个罪魁祸首就是该网络规模的辍学率太高。您可以尝试将丢失降低到20%(即keep_prob = 0.8),或者增加网络的大小以使模型有机会学习表示。

我实际上试了一下你的代码,而且这个网络大小的20%辍学我得到了大约93.5%。我在下面添加了一些额外的资源,包括原始的Dropout文章,以帮助澄清它背后的直觉,并在使用dropout时扩展更多提示,例如提高学习率。

参考文献:


0
投票

我认为有两件事可能导致问题。

首先,我不建议在第一层使用dropout(太多50%,使用较低,在10-25%范围内,如果必须)),因为当你使用如此高的丢失时,甚至更高级别的功能都不会被学习和传播更深层次。同时尝试从10%到50%的退出范围,看看准确度如何变化。没有办法事先知道什么价值会起作用

其次,你通常不会在推理中使用辍学。要将dropout的keep_prob参数中的传递修复为占位符,并在推理时将其设置为1。

此外,如果您说明的准确度值是训练准确度,那么首先可能没有太多问题,因为当您没有过度拟合时,辍学通常会少量降低训练准确度,其测试/验证准确性需要密切监视

© www.soinside.com 2019 - 2024. All rights reserved.