根据范围(变量)列条件并置行

问题描述 投票:0回答:1

为了进行后续讨论,我将参考以下数据框:https://gist.github.com/ryankshah/ab8c2b7c5e178264ccefbae9d72760ee

dput()的简短记录可以在这里找到:

structure(list(PacketTime = c(0.925717, 0.925967, 0.9262, 0.926368, 
0.966861, 0.966998, 0.9672, 0.967252, 0.971273, 0.97149, 0.971816, 
0.972113, 0.974991, 0.975093, 0.97521, 0.975273, 2.008958, 2.009109, 
2.009449, 2.009612, 2.01108, 2.011192, 2.011354, 2.011388, 2.015283, 
2.01536, 2.015468, 2.015525, 2.016604, 2.016834, 2.017415, 2.017646, 
2.019347, 2.019545, 2.019759, 2.019978, 2.020895, 2.021105, 2.023508, 
2.023639, 2.023769, 2.023843, 2.027671, 2.027725, 2.02788, 2.027916, 
2.028638, 2.02883, 2.03151, 2.031595, 2.031702, 2.031747, 2.034291, 
2.034404, 2.039741, 2.039864, 2.039985, 2.040038, 2.042009, 2.042255, 
2.043858, 2.043994, 2.044106, 2.044159, 2.04811, 2.048292, 2.048462, 
2.048528, 3.050371, 3.050611, 3.055923, 3.0562, 3.056505, 3.056714, 
8.059537, 8.059921, 8.065446, 8.065725, 8.066084, 8.066262, 10.068591, 
10.069067, 10.07296, 10.073275, 10.073676, 10.073876, 15.074687, 
15.075031, 15.078191, 15.078466, 15.078801, 15.079074, 18.081208, 
18.081529, 18.085248, 18.085535, 18.085852, 18.086052, 23.087208, 
23.087593, 23.090558, 23.090785, 23.091051, 23.091178, 27.09315, 
27.093459, 27.096607, 27.096871, 27.097215, 27.097397, 32.099606, 
32.100004, 32.102153, 32.102447, 32.102661, 32.102778, 37.105682, 
37.106026, 37.107854, 37.108097, 37.108414, 37.10868, 37.111986, 
37.11225, 37.112499, 37.112722, 42.114744, 42.115078, 42.117969, 
42.118193, 42.118482, 42.11864, 48.121045, 48.121391, 48.12679, 
48.127032, 48.127318, 48.127445, 53.130552, 53.130845, 53.136697, 
53.13683, 53.136959, 53.137048, 60.139012, 60.139349, 60.141249, 
60.141512, 60.141795, 60.142002, 60.145269, 60.145407, 60.145723, 
60.145829, 65.148214, 65.148629, 65.150792, 65.15101, 65.151288, 
65.151488, 73.155091, 73.155481, 73.158976, 73.159112, 73.159464, 
73.159645, 78.163605, 78.164009, 78.168708, 78.169007, 78.169318, 
78.169514, 87.170767, 87.171061, 87.176407, 87.176686, 87.177029, 
87.177226, 92.180694, 92.181003, 92.186155, 92.186468, 92.18692, 
92.187193, 102.187674, 102.18776, 102.190376, 102.190668, 102.193207, 
102.193441, 102.193629, 102.193805, 107.195208, 107.195504, 107.199008, 
107.199342, 107.199769, 107.200036, 117.199583, 117.199655, 118.203094, 
118.203531, 118.205494, 118.205809, 118.206103, 118.206409, 118.209557, 
118.209755, 123.212961, 123.213286, 123.215108, 123.215345, 123.215595, 
123.21583, 123.219189, 123.219368, 123.219602, 123.219702, 133.219802, 
133.219915, 135.224383, 135.224711, 135.22949, 135.229697, 135.230052, 
135.230166, 140.231358, 140.231709, 140.235145, 140.235354, 140.235666, 
140.23583, 150.23674, 150.236893, 153.237651, 153.237955, 153.240681, 
153.241032, 153.241138, 153.241311, 158.244289, 158.24462, 158.246344, 
158.246533, 158.246818, 158.247013, 158.25062, 158.250965, 158.251396, 
158.251727, 168.253167, 168.25327, 172.253859, 172.254289, 172.259665, 
172.259902, 172.26007, 172.260166, 177.262164, 177.262425, 177.265205, 
177.265375, 177.265631, 177.265884, 187.266422, 187.266505, 192.269399, 
192.269792, 192.27395, 192.274232, 192.274519, 192.274847, 197.279566, 
197.280221, 197.283799, 197.284061, 197.28468, 197.28491, 207.285048, 
207.285102, 213.286424, 213.286742, 213.291805, 213.292022, 213.292293, 
213.292509, 218.295248, 218.295628, 218.2975, 218.297738, 218.298062, 
218.298262, 218.301568, 218.301735, 218.301938, 218.302066, 228.301508, 
228.301602, 235.305332, 235.305773, 235.309398, 235.309731, 235.310093, 
235.310401, 240.312849, 240.313132, 240.315194, 240.315485, 240.315803, 
240.316064, 240.31901, 240.319262, 240.319539, 240.319755, 250.320398, 
250.320455, 258.321427, 258.321849, 258.326082, 258.32634, 258.32664, 
258.326817, 263.32921, 263.329591, 263.331642, 263.331896, 263.332199, 
263.332393, 263.335719, 263.335938, 263.336188, 263.336369, 273.337068, 
273.337128, 282.338967, 282.339414, 282.34244, 282.342766, 282.34309, 
282.343362, 287.345265, 287.345607, 287.348166, 287.348339, 287.348594, 
287.348817, 297.349787, 297.349865, 307.349457, 307.34957, 307.351337, 
307.3518, 307.354625, 307.355012, 307.35552, 307.35587, 312.35734, 
312.357705, 312.359736, 312.36004, 312.360364, 312.360594, 312.364214, 
312.364463, 312.364735, 312.36499, 322.366091, 322.366227, 332.366338, 
332.366534, 333.367324, 333.36794, 333.369832, 333.370364, 333.371064, 
333.371449, 333.373735, 333.374203, 333.374898, 333.375308, 338.3775, 
338.377843, 338.38372, 338.384043, 338.384348, 338.384588, 348.384979, 
348.38518, 358.385032, 358.386079, 360.385749, 360.386182, 360.388575, 
360.388942, 360.389326, 360.389634, 365.393852, 365.394483, 365.398596, 
365.399103, 365.399843, 365.400314, 375.401212, 375.401412, 385.402246, 
385.402379, 388.403104, 388.403558, 388.407001, 388.407347, 388.407757, 
388.407949, 393.410628, 393.411324, 393.416863, 393.417356, 393.418049, 
393.418364, 403.419292, 403.419493, 413.420496, 413.420703, 417.422362, 
417.423105, 417.424998, 417.425524, 417.426235, 417.426626, 417.4289, 
417.429372, 417.430061, 417.430587, 422.433468, 422.434207, 422.438868, 
422.439384, 422.440069, 422.440524, 432.441634, 432.44168, 442.441719, 
442.44192, 447.442671, 447.442965, 447.446516, 447.446798, 447.44712, 
447.447346, 452.450152, 452.450889, 452.456021, 452.456473, 452.457157, 
452.45767, 462.458991, 462.459146, 472.458653, 472.45875, 478.460478, 
478.461126, 478.462897, 478.463172, 478.463473, 478.46373, 478.467188, 
478.467475, 483.468957, 483.46949, 483.473127, 483.473498, 483.473933, 
483.474279, 493.475598, 493.475683, 503.475776, 503.475979, 510.477035, 
510.477734, 510.479687, 510.480173, 510.480865, 510.481371, 510.483715, 
510.484214, 510.484828, 510.485251, 515.48768, 515.488313, 515.493402, 
515.493923, 515.494545, 515.495049, 525.494754, 525.494827, 535.495316, 
535.495521, 543.497961, 543.498653, 543.503644, 543.504176), 
    FrameLen = c(44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 
    44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 285L, 44L, 285L, 
    44L, 44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 285L, 44L, 
    285L, 44L, 44L, 276L, 44L, 276L, 285L, 44L, 44L, 276L, 44L, 
    276L, 44L, 276L, 44L, 276L, 288L, 44L, 44L, 276L, 44L, 276L, 
    285L, 44L, 44L, 276L, 44L, 276L, 288L, 44L, 44L, 276L, 44L, 
    276L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 
    289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 
    276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 
    44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 
    276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 
    44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 
    276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 
    44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 44L, 
    276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 
    44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 
    44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 
    45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 
    276L, 44L, 276L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 
    44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 44L, 276L, 44L, 
    276L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 
    44L, 276L, 44L, 276L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 
    276L, 289L, 44L, 44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 
    45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 
    276L, 44L, 276L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 
    289L, 44L, 44L, 276L, 44L, 276L, 45L, 56L, 289L, 44L, 44L, 
    276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 44L, 276L, 
    44L, 276L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 
    44L, 44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 45L, 56L, 
    289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 
    276L, 44L, 276L, 44L, 276L, 45L, 56L, 289L, 44L, 44L, 276L, 
    44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 45L, 56L, 45L, 
    56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 
    44L, 276L, 44L, 276L, 44L, 276L, 45L, 56L, 45L, 56L, 289L, 
    44L, 44L, 276L, 44L, 276L, 44L, 276L, 44L, 276L, 289L, 44L, 
    44L, 276L, 44L, 276L, 45L, 56L, 45L, 56L, 289L, 44L, 44L, 
    276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 45L, 56L, 
    45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 
    276L, 44L, 276L, 45L, 56L, 45L, 56L, 289L, 44L, 44L, 276L, 
    44L, 276L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 
    276L, 45L, 56L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 276L, 
    289L, 44L, 44L, 276L, 44L, 276L, 45L, 56L, 45L, 56L, 289L, 
    44L, 44L, 276L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 
    44L, 276L, 45L, 56L, 45L, 56L, 289L, 44L, 44L, 276L, 44L, 
    276L, 44L, 276L, 44L, 276L, 289L, 44L, 44L, 276L, 44L, 276L, 
    45L, 56L, 45L, 56L, 289L, 44L, 44L, 276L), IPLen = c(40L, 
    272L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 272L, 
    40L, 272L, 40L, 272L, 281L, 40L, 281L, 40L, 40L, 272L, 40L, 
    272L, 40L, 272L, 40L, 272L, 281L, 40L, 281L, 40L, 40L, 272L, 
    40L, 272L, 281L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 
    272L, 284L, 40L, 40L, 272L, 40L, 272L, 281L, 40L, 40L, 272L, 
    40L, 272L, 284L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 
    272L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 
    40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 
    272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 
    40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 
    40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 
    40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 
    40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 
    285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 272L, 285L, 
    40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 
    285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 
    272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 52L, 285L, 40L, 
    40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 
    52L, 285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 285L, 40L, 
    40L, 272L, 40L, 272L, 40L, 272L, 40L, 272L, 41L, 52L, 285L, 
    40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 
    41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 
    272L, 40L, 272L, 40L, 272L, 40L, 272L, 41L, 52L, 285L, 40L, 
    40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 
    52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 
    40L, 272L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 
    40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 272L, 41L, 52L, 
    285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 
    272L, 40L, 272L, 40L, 272L, 41L, 52L, 285L, 40L, 40L, 272L, 
    40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 
    272L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 
    40L, 272L, 40L, 272L, 41L, 52L, 41L, 52L, 285L, 40L, 40L, 
    272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 
    40L, 272L, 41L, 52L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 
    272L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 
    41L, 52L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 
    40L, 40L, 272L, 40L, 272L, 41L, 52L, 41L, 52L, 285L, 40L, 
    40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 
    52L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 
    40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 52L, 41L, 
    52L, 285L, 40L, 40L, 272L, 40L, 272L, 285L, 40L, 40L, 272L, 
    40L, 272L, 41L, 52L, 41L, 52L, 285L, 40L, 40L, 272L, 40L, 
    272L, 40L, 272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 52L, 
    41L, 52L, 285L, 40L, 40L, 272L, 40L, 272L, 40L, 272L, 40L, 
    272L, 285L, 40L, 40L, 272L, 40L, 272L, 41L, 52L, 41L, 52L, 
    285L, 40L, 40L, 272L), TCPLen = c(0L, 232L, 0L, 232L, 0L, 
    232L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 241L, 
    0L, 241L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 241L, 
    0L, 241L, 0L, 0L, 232L, 0L, 232L, 241L, 0L, 0L, 232L, 0L, 
    232L, 0L, 232L, 0L, 232L, 244L, 0L, 0L, 232L, 0L, 232L, 241L, 
    0L, 0L, 232L, 0L, 232L, 244L, 0L, 0L, 232L, 0L, 232L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 
    232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 
    0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 245L, 
    0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 1L, 0L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 
    0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 0L, 232L, 0L, 232L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 
    232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 0L, 245L, 0L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 0L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 
    232L, 0L, 232L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 
    0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 1L, 0L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 
    232L, 0L, 232L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 
    0L, 0L, 232L, 0L, 232L, 1L, 0L, 1L, 0L, 245L, 0L, 0L, 232L, 
    0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 232L, 
    1L, 0L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 0L, 
    232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 0L, 1L, 0L, 245L, 
    0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 
    0L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 
    0L, 232L, 1L, 0L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 
    232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 232L, 1L, 0L, 1L, 
    0L, 245L, 0L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 1L, 0L, 1L, 0L, 245L, 0L, 0L, 232L, 0L, 232L, 0L, 232L, 
    245L, 0L, 0L, 232L, 0L, 232L, 1L, 0L, 1L, 0L, 245L, 0L, 0L, 
    232L, 0L, 232L, 0L, 232L, 0L, 232L, 245L, 0L, 0L, 232L, 0L, 
    232L, 1L, 0L, 1L, 0L, 245L, 0L, 0L, 232L), Movement = c(3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3)), row.names = c(NA, 500L), class = "data.frame")

这里的目的是对PacketTime相似的所有分组进行分组。可以使用以下方法完成:

brks <- seq(trunc(min(pump_packets$PacketTime)), max(pump_packets$PacketTime) + 5, 5)
pump_packets$Interval <- cut(pump_packets$PacketTime, breaks = brks, labels = brks[-length(brks)], right = FALSE)

但是,这是固定的时间间隔。在这种情况下,分组是针对在1s至60s间隔范围内的数据包时间进行的,重复该分组时间(即,当达到60s间隔时,下一个分组将从1s开始)。如您所见,固定间隔的当前解决方案未考虑范围间隔。除此之外,这些中的一些(即1480s也包括1481s的一部分)。使这个过程更简单的原因是,每个组都由n第二个计时窗口(通过Python time.sleep(n))隔开,其中nrange(1, 61)中(从1s到60s)。

Furthermore

,在数据包之间的每个间隔之后-有5秒的睡眠(中断)。下面以更直观的方式显示了我所说的间隔的示例。enter image description here

如何实现? (这是此帖子的可变版本Concatenating data frame rows based on column condition

EDIT

:我最终将使用分组数据按数据包所在的时间间隔进行分组,例如:pump_packets <- pump_packets %>% group_by(Interval) %>% summarise( PTime=max(PacketTime)-min(PacketTime), FLen=list(FrameLen), ILen=list(IPLen), Movement=3 ) %>% rename(PacketTime=PTime) %>% rename(FrameLen=FLen) %>% rename(IPLen=ILen)
最终,总共应该有300个样本/组。
<< [

尚不清楚您要实现什么目标,因此这可能是一个漫长的尝试。
此问题似乎包含2个问题:

创建具有多个by元素的序列

通过1中生成的序列将特定列分组。

    创建具有多个by元素的序列
  1. 现在用于
  2. 1。
  3. ,尽管我不确定它是否已存在,但我不知道任何内置或打包功能。但是,我们可以使用向量化的seqv元素简单地创建自己的by函数。

seqv <- function(from, to, by){ diff <- to - from if((n <- diff / sum(by)) < 1){ n <- 1 }else{ n <- ceiling(n) } out <- c(from, from + cumsum(rep(by, n))) out[out <= to] }

用法示例:mi <- trunc(min(pump_packets$PacketTime)) ma <- max(pump_packets$PacketTime) ra <- 1:60 ra[60] <- ra[60] + 5 cuts <- seqv(mi, ma + 5, ra) cuts[c(1:6, (length(cuts) - 5):length(cuts))] [1] 0 1 3 6 10 15 10400 10450 10501 10553 10606 10660 length(cuts) [1] 355

现在此输出不包括10660.46的最大值,并且长度不是300,但是这确实遵循问题中的描述,因此我不确定误解发生在哪里。现在,我将在最后一个值上添加一点以包括最大值。

cuts[length(cuts)] <- cuts[length(cuts)] + 1

通过1中生成的序列将特定列分组。

现在主要部分确实在

1。中,因此在这里我们可以使用cut函数创建分组

pump_packets$group <- cut(pump_packets$PacketTime, breaks = cuts, right = FALSE, dig.lab = 12) pump_packets_summary <- pump_packets %>% group_by(group) %>% summarise( PacketTime = max(PacketTime) - min(PacketTime), FrameLen = list(FrameLen), IPLen = list(IPLen), n = n() ) head(pump_packets_summary) # A tibble: 6 x 5 group PacketTime FrameLen IPLen n <fct> <dbl> <list> <list> <int> 1 [0,1) 0.0496 <int [16]> <int [16]> 16 2 [1,3) 0.0396 <int [52]> <int [52]> 52 3 [3,6) 0.00634 <int [6]> <int [6]> 6 4 [6,10) 0.00672 <int [6]> <int [6]> 6 5 [10,15) 0.00529 <int [6]> <int [6]> 6 6 [15,21) 3.01 <int [12]> <int [12]> 12 tail(pump_packets_summary ) # A tibble: 6 x 5 group PacketTime FrameLen IPLen n <fct> <dbl> <list> <list> <int> 1 [10351,10400) 30.0 <int [8]> <int [8]> 8 2 [10400,10450) 41.0 <int [20]> <int [20]> 20 3 [10450,10501) 42.0 <int [24]> <int [24]> 24 4 [10501,10553) 43.0 <int [20]> <int [20]> 20 5 [10553,10606) 44.0 <int [20]> <int [20]> 20 6 [10606,10661) 50.0 <int [16]> <int [16]> 16

可能是期望的结果。

r dataframe grouping intervals
1个回答
0
投票

创建具有多个by元素的序列

© www.soinside.com 2019 - 2024. All rights reserved.