散景集群条形图

问题描述 投票:0回答:1

enter image description here我有一些数据:

data = {'FFCB' : ['D','I'],
        'CS'   : [0.966248, 0],
        'FPSI'   : [0.00264871, 0],
        'SA'   : [0, 0.114216],
        'NA'   : [0.0127895, 0.00567031],
        'O'   : [0.00552444, 0],
        'FPSDA'   : [0.00136219, 0],
        'HDR'   : [3.78387e-05, 0]}

我想在bokeh中创建一个聚类条形图,这样条形图及其x标签的值就会显示在工具提示中。此外,xaxis主要标签应显示在图例中。未显示xaxis主要标签。仅显示组标签。 xaxis子组标签是标签值('D''I')。 xaxis主要标签是余额标签。 ('CS','FPSI','SA','NA','O','FPSDA','HDR')。主要标签需要显示在图例上,因为它们在实际数据中很长(如图所示)。条形图的值应显示在工具提示中。

有谁能帮助我解决这个问题。请看图片。

谢谢

迈克尔

python bokeh
1个回答
1
投票

这应该做的工作(测试Bokeh v1.0.4)。如果您愿意,可以将图例方向更改为“垂直”。

from bokeh.core.properties import value
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, HoverTool, CustomJS
from bokeh.plotting import figure
from bokeh.transform import dodge
from bokeh.palettes import Spectral6

data = {'FFCB' : ['D', 'I'],
        'CS'   : [0.013254, 0.01],
        'FPSI'   : [0.00264871, 0.02],
        'SA'   : [0.03, 0.114216],
        'NA'   : [0.0127895, 0.00567031],
        'O'   : [0.00552444, 0.03],
        'FPSDA'   : [0.00136219, 0.04],
        'HDR'   : [0.03, 0.05]}

source = ColumnDataSource(data = data)

p = figure(x_range = data['FFCB'], y_range = (0, 0.2), plot_width = 600, plot_height = 400, title = "Clustered bar chart", tools = '')

vbar1 = p.vbar(x = dodge('FFCB', -0.25, range = p.x_range), top = 'CS', width = 0.1, source = source,
       color = Spectral6[0], legend = value("CS"))
hover_tool_vbar1 = HoverTool(tooltips = [('CS', '@CS{0.000}')], show_arrow = False, renderers = [vbar1])

vbar2 = p.vbar(x = dodge('FFCB', -0.15, range = p.x_range), top = 'FPSI', width = 0.1, source = source,
       color = Spectral6[1], legend = value("FPSI"))
hover_tool_vbar2 = HoverTool(tooltips = [('FPSI', '@FPSI{0.000}')], show_arrow = False, renderers = [vbar2])

vbar3 = p.vbar(x = dodge('FFCB', -0.05, range = p.x_range), top = 'SA', width = 0.1, source = source,
       color = Spectral6[2], legend = value("SA"))
hover_tool_vbar3 = HoverTool(tooltips = [('SA', '@SA{0.000}')], show_arrow = False, renderers = [vbar3])

vbar4 = p.vbar(x = dodge('FFCB', 0.05, range = p.x_range), top = 'NA', width = 0.1, source = source,
       color = Spectral6[3], legend = value("NA"))
hover_tool_vbar4 = HoverTool(tooltips = [('NA', '@NA{0.000}')], show_arrow = False, renderers = [vbar4])

vbar5 = p.vbar(x = dodge('FFCB', 0.15, range = p.x_range), top = 'O', width = 0.1, source = source,
       color = Spectral6[4], legend = value("O"))
hover_tool_vbar5 = HoverTool(tooltips = [('O', '@O{0.000}')], show_arrow = False, renderers = [vbar5])

vbar6 = p.vbar(x = dodge('FFCB', 0.25, range = p.x_range), top = 'HDR', width = 0.1, source = source,
       color = Spectral6[5], legend = value("HDR"))
hover_tool_vbar6 = HoverTool(tooltips = [('HDR', '@HDR{0.000}')], show_arrow = False, renderers = [vbar6])

p.x_range.range_padding = 0.2
p.xgrid.grid_line_color = None
p.legend.location = "top_left"
p.legend.click_policy = 'hide'
p.legend.orientation = "horizontal"

p.add_tools(hover_tool_vbar1, hover_tool_vbar2, hover_tool_vbar3, hover_tool_vbar4, hover_tool_vbar5, hover_tool_vbar6)

show(p)

结果:

enter image description here

© www.soinside.com 2019 - 2024. All rights reserved.