我已经实现了带有注意层的序列到序列模型,如果我有 300000 个数据点,我不会收到任何错误,如果我使用所有数据点,我会得到以下错误 model.fit
TypeError: Expected int32, got None of type 'NoneType' instead.
这是什么原因?
model.fit之前的代码是
class encoder_decoder(tf.keras.Model):
def __init__(self,embedding_size,encoder_inputs_length,output_length,vocab_size,output_vocab_size,score_fun,units):
super(encoder_decoder,self).__init__()
self.vocab_size = vocab_size
self.enc_units = units
self.embedding_size = embedding_size
self.encoder_inputs_length = encoder_inputs_length
self.output_length = output_length
self.lstm_output = 0
self.state_h = 0
self.state_c = 0
self.output_vocab_size = output_vocab_size
self.dec_units = units
self.score_fun = score_fun
self.att_units = units
self.encoder=Encoder(self.vocab_size,self.embedding_size,self.enc_units,self.encoder_inputs_length)
self.decoder = Decoder(self.output_vocab_size, self.embedding_size, self.output_length, self.dec_units ,self.score_fun ,self.att_units)
# self.dense = Dense(self.output_vocab_size,activation = "softmax")
def call(self,data):
input,output = data[0],data[1]
encoder_hidden = self.encoder.initialize_states(input.shape[0])
encoder_output,encoder_hidden,encoder_cell = self.encoder(input,encoder_hidden)
decoder_hidden = encoder_hidden
decoder_cell =encoder_cell
decoder_output = self.decoder(output,encoder_output,decoder_hidden,decoder_cell)
return decoder_output
在调用函数中,我正在初始化编码器的状态 使用以下代码行输入的行数
encoder_hidden = self.encoder.initialize_states(input.shape[0])
如果我打印输入,我得到的形状为 (None,55) 这就是我收到此错误的原因。 这里我的数据点总数是 330614 当我使用我得到的所有数据时 错误,当我仅使用 330000 个数据点时,我收到此错误, 如果我在 def 方法中打印批处理,我得到的形状为 (64,55)
请找到我的以下代码,用于为我的序列到序列模型创建数据集
重新处理数据的函数和创建数据集的函数 和一个加载数据集的函数
def preprocess_sentence(w):
# w = unicode_to_ascii(w.lower().strip())
w = re.sub(r"([?.!,¿])", r" \1 ", w)
w = re.sub(r'[" "]+', " ", w)
w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)
w = w.strip()
w = '<start> ' + w + ' <end>'
return w
def create_dataset(path, num_examples):
lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
# lines1 = lines[330000:]
# lines = lines[0:323386]+lines1
word_pairs = [[preprocess_sentence(w) for w in l.split('\t')] for l in lines[:num_examples]]
word_pairs = [[i[0],i[1]] for i in word_pairs]
return zip(*word_pairs)
def tokenize(lang):
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(
filters='')
lang_tokenizer.fit_on_texts(lang)
tensor = lang_tokenizer.texts_to_sequences(lang)
tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor,padding='post')
return tensor, lang_tokenizer
def load_dataset(path, num_examples=None):
# creating cleaned input, output pairs
targ_lang, inp_lang = create_dataset(path, num_examples)
input_tensor, inp_lang_tokenizer = tokenize(inp_lang)
target_tensor, targ_lang_tokenizer = tokenize(targ_lang)
return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer,targ_lang,inp_lang
# Try experimenting with the size of that dataset
num_examples = None
input_tensor, target_tensor, inp_lang, targ_lang,targ_lang_text,inp_lang_text = load_dataset(path, num_examples)
# Calculate max_length of the target tensors
max_length_targ, max_length_inp = target_tensor.shape[1], input_tensor.shape[1]
max_length_targ,max_length_inp
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)
数据集的形状如下
shape of input train (269291, 55)
shape of target train (269291, 53)
shape of input test (67323, 55)
shape of target test (67323, 53)
您可以在 model.fit 之前共享代码块。
NoneType 错误表示传递给模型的最终数组由于某种原因为空。您可以在前面的步骤中添加打印语句,以了解数组在哪里变空。
将该场景与您获取所有数据点的情况进行比较,以便您可以了解数组在哪里发生变化以及在将其传递给 model.fit 之前如何处理它。
更改此行
编码器隐藏 = self.encoder.initialize_states(input.shape[0]) ->
编码器隐藏= self.encoder.initialize_states(tf.shape(输入)[0])