我的任务是实现一个卷积神经网络,该网络可以评估在 MNIST 数据集中找到的手写数字,网络架构如下所示:
我已经实现了一个与架构相匹配的 CNN,不幸的是它的准确率只有 10% 左右。我在网上查看并尝试了其他 CNN 示例,以确定是否有其他原因导致该问题,但它们似乎工作正常,准确率约为 99%。我已将两个 CNN 放入代码中,并进行布尔值切换以显示两者之间的差异:
import tensorflow
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
batch_size = 128
num_classes = 10
epochs = 1
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes)
y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes)
exampleModel = False # Use to toggle which CNN goes into the model
if exampleModel: # An example CNN that I found for MNIST
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
else: # The CNN I created
input_layer = tensorflow.keras.layers.Input(shape=input_shape)
conv1 = Conv2D(32, (1, 1), activation='relu')(input_layer)
pool1 = MaxPooling2D(2, 2)(conv1)
conv2_1 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_1 = MaxPooling2D(2, 2)(conv2_1)
drop2_1 = Dropout(0.5)(pool2_1)
conv2_2 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_2 = MaxPooling2D(2, 2)(conv2_2)
drop2_2 = Dropout(0.5)(pool2_2)
conv3_1 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_1)
conv3_2 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_2)
merged = tensorflow.keras.layers.concatenate([conv3_1, conv3_2], axis=-1)
merged = Dropout(0.5)(merged)
merged = Flatten()(merged)
fc1 = Dense(1000, activation='relu')(merged)
fc2 = Dense(500, activation='relu')(fc1)
out = Dense(10)(fc2)
model = tensorflow.keras.models.Model(input_layer, out)
model.compile(loss=tensorflow.keras.losses.categorical_crossentropy,
optimizer=tensorflow.keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
为了完成我的任务,我相信我必须将我的示例 CNN 逐个转换为所需的架构。虽然我不知道如何做到这一点,但它们看起来彼此完全不同(一个是纯粹顺序的,另一个使用并行层和合并)。
您只需在最后一个out
层添加一个
softmax激活即可:
out = Dense(10, activation="softmax")(fc2)
因此您的模型已完成:
input_layer = tensorflow.keras.layers.Input(shape=input_shape)
conv1 = Conv2D(32, (1, 1), activation='relu')(input_layer)
pool1 = MaxPooling2D(2, 2)(conv1)
conv2_1 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_1 = MaxPooling2D(2, 2)(conv2_1)
drop2_1 = Dropout(0.5)(pool2_1)
conv2_2 = Conv2D(64, (1, 1), activation='relu', padding='same')(pool1)
pool2_2 = MaxPooling2D(2, 2)(conv2_2)
drop2_2 = Dropout(0.5)(pool2_2)
conv3_1 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_1)
conv3_2 = Conv2D(256, (1, 1), activation='relu', padding='same')(drop2_2)
merged = tensorflow.keras.layers.concatenate([conv3_1, conv3_2], axis=-1)
merged = Dropout(0.5)(merged)
merged = Flatten()(merged)
fc1 = Dense(1000, activation='relu')(merged)
fc2 = Dense(500, activation='relu')(fc1)
out = Dense(10, activation="softmax")(fc2)
出:
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/1
60000/60000 [==============================] - 25s 416us/step - loss: 0.6394 - acc: 0.7858 - val_loss: 0.2956 - val_acc: 0.9047
Test loss: 0.29562548571825026
Test accuracy: 0.9047