我正在尝试找到将整个Spark数据帧转换为scala Map集合的最佳解决方案。最好说明如下:
从这里开始(在Spark示例中):
val df = sqlContext.read.json("examples/src/main/resources/people.json")
df.show
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
Scala集合(Map of Maps)代表如下:
val people = Map(
Map("age" -> null, "name" -> "Michael"),
Map("age" -> 30, "name" -> "Andy"),
Map("age" -> 19, "name" -> "Justin")
)
我不认为你的问题是有道理的 - 你最外面的Map
,我只看到你试图填充值 - 你需要在最外面的Map
中拥有键/值对。话虽如此:
val peopleArray = df.collect.map(r => Map(df.columns.zip(r.toSeq):_*))
会给你:
Array(
Map("age" -> null, "name" -> "Michael"),
Map("age" -> 30, "name" -> "Andy"),
Map("age" -> 19, "name" -> "Justin")
)
那时你可以这样做:
val people = Map(peopleArray.map(p => (p.getOrElse("name", null), p)):_*)
哪个会给你:
Map(
("Michael" -> Map("age" -> null, "name" -> "Michael")),
("Andy" -> Map("age" -> 30, "name" -> "Andy")),
("Justin" -> Map("age" -> 19, "name" -> "Justin"))
)
我猜这真的更像你想要的。如果你想在任意Long
索引上键入它们,你可以这样做:
val indexedPeople = Map(peopleArray.zipWithIndex.map(r => (r._2, r._1)):_*)
哪个给你:
Map(
(0 -> Map("age" -> null, "name" -> "Michael")),
(1 -> Map("age" -> 30, "name" -> "Andy")),
(2 -> Map("age" -> 19, "name" -> "Justin"))
)
首先从Dataframe获取模式
val schemaList = dataframe.schema.map(_.name).zipWithIndex//get schema list from dataframe
从数据框中获取rdd并使用它进行映射
dataframe.rdd.map(row =>
//here rec._1 is column name and rce._2 index
schemaList.map(rec => (rec._1, row(rec._2))).toMap
).collect.foreach(println)