我制作了一个带有我喜欢的误差线的散点图,但是我想在点周围添加白色轮廓以帮助区分它们。这造成了一系列问题。我的所有尝试要么创建错误/无输出,创建相同的图形而不改变点边框,删除抖动以便将点放置在单个文件中,或者删除所有美观的分组组织。 我能够让它单独使用这些元素(分组、美学等),但不能组合使用。那就是它破裂的时候。
df=read.csv('data.csv')
## data shaping ##
clusters=data.frame()
clusters = df[df$Person == '1',]
clusters = clusters %>% drop_na(Person)
cluster_imaging = clusters %>% drop_na(fourth)
cluster_imaging$cluster_SEC = as.factor(cluster_imaging$cluster_SEC)
cluster_imaging_NT <- cluster_imaging %>%
gather(key="ROIs", value = "standardized_value", first, second, third, fourth, fifth, sixth, seventh )
cluster_imaging_NT = cluster_imaging_NT[c("id","cluster_SEC","ROIs","standardized_value")]
cluster_acts_NT = cluster_imaging_NT[0:279,]
cluster_conn_NT = cluster_imaging_NT[280:651,]
#####
## scatter plot ##
conn_NT = ggplot(cluster_conn_NT, aes(x=ROIs, y=standardized_value, fill = cluster_SEC, color = cluster_SEC)) +
#geom_boxplot(alpha = 0.3, notch = FALSE, outlier.color = "black") +
ylab("y axis") +
ggtitle("Title") +
scale_y_continuous(limits=c(-6,4)) +
scale_color_manual(values=c("gray","orange")) +
geom_jitter(aes(group=cluster_SEC), shape=16, size=3, position=position_jitterdodge()) +
geom_point(aes(group=cluster_SEC), shape=21, size=3, fill="white", color="black", position=position_jitterdodge()) +
stat_summary(aes(group=cluster_SEC), fun = mean,
fun.min = function(x) mean(x) - sd(x)/sqrt(length(x)),
fun.max = function(x) mean(x) + sd(x)/sqrt(length(x)),
geom = 'errorbar', width = 0.5, size = 1, color="black", position = position_dodge(0.75)) +
theme_minimal() +
theme(
plot.title = element_text(size = 18, face = "bold", hjust = 0.5),
axis.title = element_text(size = 14, face = "bold"),
axis.text = element_text(size = 12),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
)
conn_NT
如果没有最小的可重现示例,很难说这是否能解决您的问题,但请尝试:
df=read.csv('data.csv')
## data shaping ##
clusters=data.frame()
clusters = df[df$Person == '1',]
clusters = clusters %>% drop_na(Person)
cluster_imaging = clusters %>% drop_na(fourth)
cluster_imaging$cluster_SEC = as.factor(cluster_imaging$cluster_SEC)
cluster_imaging_NT <- cluster_imaging %>%
gather(key="ROIs", value = "standardized_value", first, second, third, fourth, fifth, sixth, seventh )
cluster_imaging_NT = cluster_imaging_NT[c("id","cluster_SEC","ROIs","standardized_value")]
cluster_acts_NT = cluster_imaging_NT[0:279,]
cluster_conn_NT = cluster_imaging_NT[280:651,]
#####
## scatter plot ##
conn_NT = ggplot(cluster_conn_NT, aes(x=ROIs, y=standardized_value, fill = cluster_SEC)) +
ylab("y axis") +
ggtitle("Title") +
scale_y_continuous(limits=c(-6,4)) +
scale_color_manual(values=c("gray","orange")) +
geom_point(aes(group=cluster_SEC), shape=21, size=3, color="white", position=position_jitterdodge()) +
stat_summary(aes(group=cluster_SEC), fun = mean,
fun.min = function(x) mean(x) - sd(x)/sqrt(length(x)),
fun.max = function(x) mean(x) + sd(x)/sqrt(length(x)),
geom = 'errorbar', width = 0.5, size = 1, color="black", position = position_dodge(0.75)) +
theme_minimal() +
theme(
plot.title = element_text(size = 18, face = "bold", hjust = 0.5),
axis.title = element_text(size = 14, face = "bold"),
axis.text = element_text(size = 12),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
)
conn_NT