无法一次检测多张脸

问题描述 投票:1回答:1

出于某种原因,我一次无法检测到多张脸。一次只能检测一张脸。我该如何解决这个问题?我在下面添加了代码。我已经使用Google的facenet进行实时人脸识别。

在视频输出中,它一次仅在一个面上创建一个边界框。但是在控制台输出中,它可以算出存在的面孔数量是两个或多于两个。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
from scipy import misc
import cv2
import matplotlib.pyplot as plt
import numpy as np
import argparse
import facenet
import detect_face
import os
from os.path import join as pjoin
import sys
import time
import copy
import math
import pickle
from sklearn.svm import SVC
from sklearn.externals import joblib

#addded
#import reload
#reload(sys)
#sys.setdefaultencoding('utf8')

print('Creating networks and loading parameters')
with tf.Graph().as_default():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, 
 log_device_placement=False))
    with sess.as_default():
    pnet, rnet, onet = detect_face.create_mtcnn(sess, './') #face detection

    minsize = 20  # minimum size of face                    #minsize, threshold, factor used for detection
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor
    margin = 44
    frame_interval = 3
    batch_size = 1000
    image_size = 182
    input_image_size = 160


    items = os.listdir("/Aryabhatta Robotics Internship/facenet-master/Real_time_face/ids/aligned")
    #HumanNames = []
    #for names in items:
        #HumanNames.append(names)
    #print(HumanNames)
    #HumanNames = ['Alok','Siddhant','tesra','s01','s02','s03','s04','s05','s06','s07','s08','s09','s10','s11','s12','s13','s14','s15','s16','s17','s18','s19','s20']    #train human name, known face names

    print('Loading feature extraction model')
    modeldir = '/Aryabhatta Robotics Internship/facenet-master/Real_time_face/models/20180402-114759/20180402-114759.pb' #feature extraction mmodel
    facenet.load_model(modeldir)

    images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
    embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
    phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
    embedding_size = embeddings.get_shape()[1]

    classifier_filename = '/Aryabhatta Robotics Internship/facenet-master/Real_time_face/models/my_classifier/my_classifier.pkl' #out own classifier
    classifier_filename_exp = os.path.expanduser(classifier_filename)
    with open(classifier_filename_exp, 'rb') as infile:
        (model, class_names) = pickle.load(infile)#, encoding='latin1')
        print('load classifier file-> %s' % classifier_filename_exp)

    video_capture = cv2.VideoCapture(0)
    c = 0

    # #video writer
    # fourcc = cv2.VideoWriter_fourcc(*'DIVX')
    # out = cv2.VideoWriter('3F_0726.avi', fourcc, fps=30, frameSize=(640,480))

    print('Start Recognition!')
    prevTime = 0
    while True: #infinite loop
        ret, frame = video_capture.read() #video capture from webcam

        frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5)    #resize frame (optional)

        curTime = time.time()    # calc fps
        timeF = frame_interval

        if (c % timeF == 0):
            find_results = []

            if frame.ndim == 2:
                frame = facenet.to_rgb(frame)
            frame = frame[:, :, 0:3]
            bounding_boxes, _ = detect_face.detect_face(frame, minsize, pnet, rnet, onet, threshold, factor)
            nrof_faces = bounding_boxes.shape[0]
            print('Detected_FaceNum: %d' % nrof_faces)

            if nrof_faces > 0:
                det = bounding_boxes[:, 0:4]
                img_size = np.asarray(frame.shape)[0:2]

                cropped = []
                scaled = []
                scaled_reshape = []
                bb = np.zeros((nrof_faces,4), dtype=np.int32)

                for i in range(nrof_faces):
                    print("faceno:" + str(i))
                    emb_array = np.zeros((1, embedding_size))

                    bb[i][0] = det[i][0]
                    bb[i][1] = det[i][1]
                    bb[i][2] = det[i][2]
                    bb[i][3] = det[i][3]

                    # inner exception
                    if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][2] >= len(frame[0]) or bb[i][3] >= len(frame):
                        print('face is inner of range!')
                        continue

                    cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :])
                    cropped[0] = facenet.flip(cropped[0], False)
                    scaled.append(misc.imresize(cropped[0], (image_size, image_size), interp='bilinear'))
                    scaled[0] = cv2.resize(scaled[0], (input_image_size,input_image_size),
                                           interpolation=cv2.INTER_CUBIC)
                    scaled[0] = facenet.prewhiten(scaled[0])
                    scaled_reshape.append(scaled[0].reshape(-1,input_image_size,input_image_size,3))
                    feed_dict = {images_placeholder: scaled_reshape[0], phase_train_placeholder: False}
                    emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict)
                    #print(emb_array)


                    threshold_accuracy = 155
                    predictions = model.predict_proba(emb_array)
                    #print(predictions)

                    for i in range(len(predictions[0])):
                        predictions[0][i] = np.exp(18*predictions[0][i])
                        #print(predictions)

                    best_class_indices = np.argmax(predictions, axis=1)
                    print(best_class_indices)
                    print("next")
                    best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices]
                    print(best_class_probabilities)
                    for i in range(len(best_class_indices)):
                        print('%4d  %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i]))


                    cv2.rectangle(frame, (bb[i][0], bb[i][1]), (bb[i][2], bb[i][3]), (0, 255, 0), 2) #boxing face

                        #plot result idx under box
                    text_x = bb[i][0]
                    text_y = bb[i][3] + 20
                    # print('result: ', best_class_indices[0])

                    if best_class_probabilities[i] > threshold_accuracy :
                                    #result_names = HumanNames[best_class_indices[0]]
                        cv2.putText(frame, class_names[best_class_indices[i]], (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                    1, (0, 0, 255), thickness=1, lineType=2)
                    else:
                        cv2.putText(frame, 'Unknown', (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                    1, (0, 0, 255), thickness=1, lineType=2)

                    #for H_i in HumanNames:
                        #if HumanNames[best_class_indices[0]] == H_i and best_class_probabilities[0] > threshold_accuracy :
                            #flag = 1
                            #result_names = HumanNames[best_class_indices[0]]
                            #cv2.putText(frame, result_names, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                        #1, (0, 0, 255), thickness=1, lineType=2)


                        #else:
                            #cv2.putText(frame, 'Unknown', (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                       # 1, (0, 0, 255), thickness=1, lineType=2)
            else:
                print('Unable to align')

        sec = curTime - prevTime
        prevTime = curTime
        fps = 1 / (sec)
        str1 = 'FPS: %2.3f' % fps
        text_fps_x = len(frame[0]) - 150
        text_fps_y = 20
        cv2.putText(frame, str1, (text_fps_x, text_fps_y),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 0), thickness=1, lineType=2)
        # c+=1
        cv2.imshow('Video', frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    video_capture.release()
    # #video writer
    # out.release()
    cv2.destroyAllWindows()
tensorflow face-recognition face
1个回答
0
投票

阈值精度应在0 to 1之间。确保您的阈值精度必须为>0.60

© www.soinside.com 2019 - 2024. All rights reserved.