我有以下numpy数组,形状各异。我想使用pandas创建一个数据帧,以便我可以整齐地显示它,如下所示:
numpy数组:
et_arr: [ 8.94668401e+01 1.66449935e+01 -4.44089210e-14]
ea_arr: [ 100. 21.84087363 1.04031209]
it:
[[ 0.1728 1.0688 1.4848 1.6008 ]
[ 1.36746667 1.62346667 1.63946667 0. ]
[ 1.64053333 1.64053333 0. 0. ]
[ 1.64053333 0. 0. 0. ]]
结果数据帧:
一种方法是在所有3个阵列中循环并基于索引收集。我已经尝试过numpy.column_stack
和zip并在某种程度上映射但不是想要的结果。
我总是使用pandas数据帧来显示结果,这很容易。这个看起来有点棘手。我怎样才能做到这一点。
如果您已将数组放入dict data
,则可以循环键并随意添加:
data = {"et_arr":[8.94668401e+01,1.66449935e+01,-4.44089210e-14],
"ea_arr":[100.,21.84087363,1.04031209],
"it":[[0.1728,1.0688,1.4848,1.6008],
[1.36746667,1.62346667,1.63946667,0.],
[1.64053333,1.64053333,0.,0.],
[1.64053333,0.,0.,0.]]}
# To keep track of the order of dict indices we'll capture them as we loop:
indices = []
df = pd.DataFrame()
for k in data.keys():
df = pd.concat([df, pd.DataFrame(data[k]).T], ignore_index=True).fillna(0)
if k == "it":
indices.extend([f"n={i+1}" for i in range(len(data[k]))])
else:
indices.append(k)
df.index = indices
df.columns = df.columns + 1
df
1 2 3 4
et_arr 89.46684 16.644994 -4.440892e-14 0.000000
ea_arr 100.00000 21.840874 1.040312e+00 0.000000
n=1 0.17280 1.367467 1.640533e+00 1.640533
n=2 1.06880 1.623467 1.640533e+00 0.000000
n=3 1.48480 1.639467 0.000000e+00 0.000000
n=4 1.60080 0.000000 0.000000e+00 0.000000
或者,您可以手动将它们全部混合在一起,但可扩展性较差:
df = pd.DataFrame(it)
arr_df = pd.DataFrame([et_arr,ea_arr])
df = pd.concat([df, arr_df], ignore_index=True).fillna(0)
df.columns = range(1,5)
df.columns.name = "iter"
df.index = ["n=1","n=2","n=3","n=4","et","ea"]