我有一个时间序列数据如下:
Datum Menge
1/1/2018 0:00 19.5
1/1/2018 0:15 19.0
1/1/2018 0:30 19.5
1/1/2018 0:45 19.5
1/1/2018 1:00 21.0
1/1/2018 1:15 19.5
1/1/2018 1:30 20.0
1/1/2018 1:45 23.0
数据框
data
的形状为 (14880, 2)。在Menge
列中,只有11807个值可用,其余为nan
我正在尝试将其绘制如下:
data.plot()
plt.show()
这给了我
但我想使用
seaborn
或 plotly
绘制相同的内容
对于
seaborn
我试过:
x = data.Datum
y = data.Menge.values
sns.lineplot(x = x, y = y, data = data)
它给我的输出是:
Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x21286bb8668>
并打开一个新的图形窗口,但它显示
Figure 1 (Not Responding)
所以,我有两个问题:
Datum
值。怎么改?即使对于多个时间序列,最干净的设置是:
情节:
px.line()
seaborn:
lineplot()
情节:
px.line(df, x = df.index, y = df.columns)
Seaborn:
sns.lineplot(data = df)
seaborn 和 plotly 的完整代码:
以下代码示例将让您生成两个图。
import plotly.graph_objs as go
from datetime import datetime
import plotly.express as px
import matplotlib as mpl
import seaborn as sns
import pandas as pd
import numpy as np
# sample data in a pandas dataframe
np.random.seed(23)
observations = 75
df=pd.DataFrame(dict(A=np.random.uniform(low=-1, high=1.1, size=observations).tolist(),
B=np.random.uniform(low=-1, high=1.1, size=observations).tolist(),
C=np.random.uniform(low=-1, high=1.1, size=observations).tolist(),
))
df.iloc[0,] = 0
df = df.cumsum()
firstdate = datetime(2020,1,1)
df['date'] = pd.date_range(firstdate, periods=df.shape[0]).tolist()
df.set_index('date', inplace=True)
px.line(df, x = df.index, y = df.columns)
# fig = go.Figure([{
# 'x': df.index,
# 'y': df[col],
# 'name': col
# } for col in df.columns])
# fig.show()
# sns.set_style("darkgrid")
#sns.lineplot(data = df)
px.line(df, x = df.index, y = df.columns)
另一个情节选项是:
fig = go.Figure([{
'x': df.index,
'y': df[col],
'name': col
} for col in df.columns])
fig.show()
sns.set_style("darkgrid")
sns.lineplot(data = df)
考虑玩具数据框:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({"Datum": ['1/1/2018 0:00',
'1/1/2018 0:15',
'1/1/2018 0:30',
'1/1/2018 0:45',
'1/1/2018 1:00',
'1/1/2018 1:15',
'1/1/2018 1:30',
'1/1/2018 1:45 '],
"Menge": [19.5, 19.,19.5,19.5,21,19.5,20,23]})
sns.lineplot(x="Datum", y="Menge", data=df)
plt.xticks(rotation=15)
plt.title('seaborn-matplotlib example')
plt.show()
import pandas as pd
import numpy as np
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
init_notebook_mode(connected=True)
trace1 = go.Scatter(x=df.Datum,
y=df.Menge,
name = "plotly example",
line = dict(color = 'blue'),
opacity = 0.4)
layout = dict(title='plotly example',)
fig = dict(data=[trace1], layout=layout)
iplot(fig)
这比以前在 Plotly 中容易得多。
# IMPORTS
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
# EXTRACT THE DATA
df = pd.DataFrame(
{
"Datum": [
"1/1/2018 0:00",
"1/1/2018 0:15",
"1/1/2018 0:30",
"1/1/2018 0:45",
"1/1/2018 1:00",
"1/1/2018 1:15",
"1/1/2018 1:30",
"1/1/2018 1:45 ",
],
"Menge": [19.5, 19.0, 19.5, 19.5, 21, 19.5, 20, 23],
}
)
px.line(x="Datum", y="Menge", data_frame=df, title="plotly example")
(代码与最上面的答案相同)
sns.lineplot(x="Datum", y="Menge", data=df)
plt.xticks(rotation=15)
plt.title('seaborn-matplotlib example')
这里最后给出的Plotly方案很精彩。使用图形对象也很容易为我的数据设置标签字典——因为政府给出的数据名称几乎没有描述性。所以只有几行代码:
columns = ['CPALTT01USM657N', 'UNRATE', 'TB3MS']
names = {'CPALTT01USM657N': 'Inflation Rate',
'UNRATE': 'Unemployment Rate',
'TB3MS': '3 Mo. T-Bill Rate'}
fig = go.Figure([{
'x': monthly_data['DATE'],
'y': monthly_data[col],
'name': names[col]
} for col in columns])
fig.show(renderer='iframe')