神经元网络的批量大小

问题描述 投票:0回答:1

我目前正在学习神经网络并尝试了解 Tensorflow。 我有一个代码,其中询问了批量大小,但我不知道。

import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

我阅读了文档,它应该在 model.fit() 方法中给出。如果我是对的,默认批量大小是 32。这段代码是这样吗?

提前致谢

python tensorflow networking batchsize
1个回答
0
投票

没错。那行得通。但如果你想改变它,你可以简单地将它传递给

fit(batch_size=64)
并查看结果。

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=64)
© www.soinside.com 2019 - 2024. All rights reserved.