Tensorflow 返回相同的预测

问题描述 投票:0回答:1

我正在尝试制作我的第一个张量流模型,但是我遇到了一些问题。看起来它使火车正确,但是当它进行预测时,它只返回(几乎)总是相同的值。这是代码:

n_classes = 2

tf.reset_default_graph()

x = tf.placeholder('float')
y = tf.placeholder('float')
keep_rate = tf.placeholder(tf.float32)

weights = {'W_conv1':tf.Variable(tf.random_normal([3,3,3,1,32]),
           'W_conv2':tf.Variable(tf.random_normal([3,3,3,32,64])),
           'W_fc':tf.Variable(tf.random_normal([54080,1024])),
           'out':tf.Variable(tf.random_normal([1024, n_classes]))}

biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
           'b_conv2':tf.Variable(tf.random_normal([64])),
           'b_fc':tf.Variable(tf.random_normal([1024])),
           'out':tf.Variable(tf.random_normal([n_classes]))}
                                  

def conv3d(x, W):
    return tf.nn.conv3d(x, W, strides=[1,1,1,1,1], padding='SAME')

def maxpool3d(x):
    return tf.nn.max_pool3d(x, ksize=[1,2,2,2,1], strides=[1,2,2,2,1], padding='SAME')
    
def convolutional_neural_network(x, keep_rate):
    x = tf.reshape(x, shape=[-1, IMG_SIZE_PX, IMG_SIZE_PX, SLICE_COUNT, 1])

    conv1 = tf.nn.relu(conv3d(x, weights['W_conv1']) + biases['b_conv1'])
    conv1 = maxpool3d(conv1)


    conv2 = tf.nn.relu(conv3d(conv1, weights['W_conv2']) + biases['b_conv2'])
    conv2 = maxpool3d(conv2)

    fc = tf.reshape(conv2,[-1, 54080])
    fc = tf.nn.relu(tf.matmul(fc, weights['W_fc'])+biases['b_fc'])
    fc = tf.nn.dropout(fc, keep_rate)

    output = tf.matmul(fc, weights['out'])+biases['out']

    return output

much_data = np.load('F:/Kaggle/Data Science Bowl 2017/Script/muchdata-50-50-20.npy')

train_data = much_data[:-100]
validation_data = much_data[-100:]


def train_neural_network(x):
    prediction = convolutional_neural_network(x, keep_rate)
    cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(cost)
    
    hm_epochs = 10
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        
        for epoch in range(hm_epochs):
            epoch_loss = 0
            for data in train_data:
                X = data[0]
                Y = data[1]
                _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y, keep_rate: 0.75})
                epoch_loss += c
            
            print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_loss)

            correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
            accuracy = tf.reduce_mean(tf.cast(correct, 'float'))

            print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data], keep_rate: 1.}))
            
        print('Done. Finishing accuracy:')
        print('Accuracy:',accuracy.eval({x:[i[0] for i in validation_data], y:[i[1] for i in validation_data], keep_rate: 1.}))
        
        eval_data = np.load('F:/Kaggle/Data Science Bowl 2017/Script/eval_data-50-50-20.npy')

        probabilities = tf.nn.softmax(prediction)
        sol = []
        for data in eval_data:
            X = data[0]
            id = data[1]
            probs = probabilities.eval(feed_dict={x: X, keep_rate: 1.})
            pred = prediction.eval(feed_dict={x: X, keep_rate: 1.})
            print('Outputs: ',pred)
            print('Probs: ',probs)
            sol.append([id, probs[0,1]])
        print(sol)

我还检查了模型训练期间的预测,如果我将 keep_rate 设置为 1,我在最后也几乎总是得到恒定的预测。在第一个时期有很多变化,但在最后一个时期,神经网络似乎总是对每个图像进行相同的预测。它似乎收敛到一个独特的预测值,而不考虑我传递给神经网络的图像。我检查了一百遍还是看不出错误在哪里。

这是我在 eval_data 中获得的一些图像的示例(当我打印 train_data 时的行为相同):

Probs:  [[ 0.76099759  0.23900245]]
Outputs:  [[-0.017277  -1.1754334]]
Probs:  [[ 0.76099759  0.23900245]]
Outputs:  [[-0.017277  -1.1754334]]
Probs:  [[ 0.76099759  0.23900245]]
Outputs:  [[ 117714.1953125   -47536.32421875]]
Probs:  [[ 1.  0.]]
Outputs:  [[-0.017277  -1.1754334]]
Probs:  [[ 0.76099759  0.23900245]]
Outputs:  [[-0.017277  -1.1754334]]
Probs:  [[ 0.76099759  0.23900245]]
Outputs:  [[-0.017277  -1.1754334]]
Probs:  [[ 0.76099759  0.23900245]]

请注意,它们几乎总是相同的,但有时我会看到一些奇怪的值,例如

Outputs:  [[ 117714.1953125   -47536.32421875]]
Probs:  [[ 1.  0.]]

如何解决这个问题?

python tensorflow neural-network deep-learning
1个回答
5
投票

我也遇到了同样的问题,我花了两周时间才找到原因。它可能对你有帮助。我的问题是由于嘈杂的数据集和高学习率造成的。由于 ReLU 激活可能会杀死神经元,因此当数据集有噪声时,大多数 ReLU 将死亡(不会激活任何输入,因为它认为其输入无用),然后网络可能只会学习最终标签的一些固定分布。因此结果固定为任何输入。

我的解决方案是使用

tf.nn.leaky_relu()
,因为它不会杀死负输入。

© www.soinside.com 2019 - 2024. All rights reserved.