您如何在Python中生成列表的所有排列,而与列表中元素的类型无关?
例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
从Python 2.6开始(如果您使用的是Python 3),您可以使用standard-library工具:itertools.permutations
。
itertools.permutations
如果您出于某些原因使用旧Python(<2.6),或者只是想知道其工作方式,以下是一种不错的方法,摘自import itertools
list(itertools.permutations([1, 2, 3]))
:
http://code.activestate.com/recipes/252178/
def all_perms(elements):
if len(elements) <=1:
yield elements
else:
for perm in all_perms(elements[1:]):
for i in range(len(elements)):
# nb elements[0:1] works in both string and list contexts
yield perm[:i] + elements[0:1] + perm[i:]
的文档中列出了几种替代方法。这是一个:
itertools.permutations
还有另一个,基于def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
:
itertools.product
[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]
我使用了基于[
[1, 2.0, 'three'],
[1, 'three', 2.0],
[2.0, 1, 'three'],
[2.0, 'three', 1],
['three', 1, 2.0],
['three', 2.0, 1]
]
的算法-对于长度为n的列表,您可以逐项组合每个置换项,并从每个阶段剩下的项中进行选择。第一项有n个选择,第二项有n-1个,最后一项只有n个,因此可以使用阶乘数字系统中数字的数字作为索引。这样,数字0到n!-1对应于按字典顺序的所有可能排列。
请注意,此算法的时间复杂度为[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
,其中n factorial
是输入列表的长度
的确可以像tzwenn的回答中那样迭代每个排列的第一个元素;我更喜欢这样写解决方案:
这是受Haskell实现的启发,使用列表理解:
出于性能考虑,一个受def permutation(list):
if len(list) == 0:
return [[]]
else:
return [[x] + ys for x in list for ys in permutation(delete(list, x))]
def delete(list, item):
lc = list[:]
lc.remove(item)
return lc
启发的numpy解决方案(p22):
In [1]: %timeit -n10 list(permutations(range(10)))
10 loops, best of 3: 815 ms per loop
In [2]: %timeit -n100 perms(10)
100 loops, best of 3: 40 ms per loop
这里是一种在列表上工作的算法,无需创建类似于from __future__ import print_function
def perm(n):
p = []
for i in range(0,n+1):
p.append(i)
while True:
for i in range(1,n+1):
print(p[i], end=' ')
print("")
i = n - 1
found = 0
while (not found and i>0):
if p[i]<p[i+1]:
found = 1
else:
i = i - 1
k = n
while p[i]>p[k]:
k = k - 1
aux = p[i]
p[i] = p[k]
p[k] = aux
for j in range(1,(n-i)/2+1):
aux = p[i+j]
p[i+j] = p[n-j+1]
p[n-j+1] = aux
if not found:
break
perm(5)
处Ber的解决方案的新中间列表。
递归之美:
[该算法是最有效的,它避免了在递归调用中进行数组传递和操作,在Python 2、3中有效]]
>>> import copy
>>> def perm(prefix,rest):
... for e in rest:
... new_rest=copy.copy(rest)
... new_prefix=copy.copy(prefix)
... new_prefix.append(e)
... new_rest.remove(e)
... if len(new_rest) == 0:
... print new_prefix + new_rest
... continue
... perm(new_prefix,new_rest)
...
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']
并且从def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
开始:
Python 2.6
(作为生成器返回。使用import itertools
itertools.permutations([1,2,3])
作为列表返回。)
for p in permute((1,2,3)):
print(p)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
生成所有可能的排列
另一种方法(无库)
我看到这些递归函数中正在进行迭代的lot
另一个解决方案:
[为了节省您的人们可能的搜索和实验时间,这是Python中的非递归置换解决方案,它也适用于Numba(自0.41版起:]]]
def permutation(flag, k =1 ):
N = len(flag)
for i in xrange(0, N):
if flag[i] != 0:
continue
flag[i] = k
if k == N:
print flag
permutation(flag, k+1)
flag[i] = 0
permutation([0, 0, 0])
我的Python解决方案:
%timeit permutations(np.arange(5),5)
243 µs ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
time: 406 ms
%timeit list(itertools.permutations(np.arange(5),5))
15.9 µs ± 8.61 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
time: 12.9 s
def permutes(input,offset):
if( len(input) == offset ):
return [''.join(input)]
result=[]
for i in range( offset, len(input) ):
input[offset], input[i] = input[i], input[offset]
result = result + permutes(input,offset+1)
input[offset], input[i] = input[i], input[offset]
return result
# input is a "string"
# return value is a list of strings
def permutations(input):
return permutes( list(input), 0 )
# Main Program
print( permutations("wxyz") )
输出:['abc','acb','bac','bca','cab','cba']
使用def permutation(word, first_char=None):
if word == None or len(word) == 0: return []
if len(word) == 1: return [word]
result = []
first_char = word[0]
for sub_word in permutation(word[1:], first_char):
result += insert(first_char, sub_word)
return sorted(result)
def insert(ch, sub_word):
arr = [ch + sub_word]
for i in range(len(sub_word)):
arr.append(sub_word[i:] + ch + sub_word[:i])
return arr
assert permutation(None) == []
assert permutation('') == []
assert permutation('1') == ['1']
assert permutation('12') == ['12', '21']
print permutation('abc')
Counter
对于Python,我们可以使用itertools并导入排列和组合来解决您的问题
from collections import Counter
def permutations(nums):
ans = [[]]
cache = Counter(nums)
for idx, x in enumerate(nums):
result = []
for items in ans:
cache1 = Counter(items)
for id, n in enumerate(nums):
if cache[n] != cache1[n] and items + [n] not in result:
result.append(items + [n])
ans = result
return ans
permutations([1, 2, 2])
> [[1, 2, 2], [2, 1, 2], [2, 2, 1]]
以下代码仅适用于Python 2.6及更高版本
首先,导入list(permutations(l))
:
itertools
import itertools
print list(itertools.permutations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4),
(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)]
print list(itertools.combinations('123', 2))
[('1', '2'), ('1', '3'), ('2', '3')]
print list(itertools.product([1,2,3], [4,5,6]))
[(1, 4), (1, 5), (1, 6),
(2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6)]
print list(itertools.product([1,2], repeat=3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]
permutations('abc')
此解决方案实现了一个生成器,以避免将所有排列保留在内存中:
以下代码是给定列表的就地排列,实现为生成器。由于仅返回对列表的引用,因此不应在生成器外部修改列表。该解决方案是非递归的,因此使用低内存。输入列表中的元素的多个副本也可以很好地工作。
我认为,很明显的一种方式可能是:
以实用样式