求解非线性方程:为吉布斯自由能问题增加约束

问题描述 投票:1回答:1

我正试图用指数公式解决一个非线性系统,该系统将使用拉格朗日方法最小化吉布斯自由能。方程已经具有指数形式Y1...Y6的拉格朗日,后来转换为化学物种n1...n9的摩尔数。

问题是fsolve()给出的答案变化很大,即使用相同的猜测重新运行问题,它给出了不同的值。但主要的问题是,我用不同的猜测得到的所有解决方案都没有物理意义,因为在将Ys转换为ns后,我得到了质量的负值。

所以通过涉及的物理学我可以确定所有[n1...n9] >= 0。也可以确定[n1...n9]的所有最大值。

如何将其添加到代码中?

import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]  
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
    Y1 = z[0]
    Y2 = z[1] 
    Y3 = z[2]
    Y4 = z[3] 
    Y5 = z[4] 
    Y6 = z[5]
# Number of moles in each phase:
    N1 = z[6]
    N2 = z[7]
    N3 = z[8]
# Equations of energy conservation and mass conservation:
    F = np.zeros(9) 
    F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
    F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
    F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
    F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
    F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
    F[5] = N3 * (B[7] * Y5)  - a_atoms[5]
# 
    F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1 
    F[7] = B[0] * Y1 - 1 
    F[8] = B[7] * Y6 - 1
    return F
#
zGuess = np.ones(9)
z = scipy.optimize.fsolve(GibbsEq, zGuess)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#
n1 = z[7] * B[0] * z[0]
n2 = z[6] * B[1] * z[0] * z[2]
n3 = z[6] * B[2] * z[0] * z[2]**2
n4 = z[6] * B[3] * z[1]**2
n5 = z[6] * B[4] * z[0] * z[1]**4
n6 = z[6] * B[5] * z[1]**2 * z[4]
n7 = z[6] * B[6] * z[3]**2
n8 = z[8] * B[7] * z[5]
n9 = z[6] * B[8] * z[1]**2 * z[4]
N_T = [n1, n2, n3, n4, n5, n6, n7, n8, n9]
print(z)
print(z[6],z[7],z[8])
print(N_T)
for n in N_T:
    if n < 0:
        print('Error: there is negative values for mass in the solution!')
        break
  1. 如何在fsolve中添加约束?
  2. 在python中是否有其他求解器具有更多约束选项以获得稳定性和初始猜测的更多独立性?

谢谢!

python numpy scipy nonlinear-optimization chemistry
1个回答
1
投票

这两个问题都有一个答案。

fsolve不支持约束。您可以提供初始估计值作为正值,但这并不能保证正根。但是,您可以将问题重新表述为优化问题,并使用任何优化函数(如scipy.optimize.minimize)最小化强制约束的成本函数。

作为一个最小的例子,如果你想找到方程x * x -4的正根,你可以这样做。

scipy.optimize.minimize(lambda x:(x*x-4)**2,x0= [5], bounds =((0,None),))

采用(min,max)对的bounds参数可用于对根施加正约束。

输出:

 fun: array([1.66882981e-17])
 hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>
      jac: array([1.27318954e-07])
  message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
     nfev: 20
      nit: 9
   status: 0
  success: True
        x: array([2.])

通过这种方式,您的代码可以修改如下。只需添加边界,更改函数return语句,并使用fsolvescipy.optimize.minimize更改为bounds

import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]  
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
    Y1 = z[0]
    Y2 = z[1] 
    Y3 = z[2]
    Y4 = z[3] 
    Y5 = z[4] 
    Y6 = z[5]
# Number of moles in each phase:
    N1 = z[6]
    N2 = z[7]
    N3 = z[8]

    bounds =((0,None),)*9
# Equations of energy conservation and mass conservation:
    F = np.zeros(9) 
    F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
    F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
    F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
    F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
    F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
    F[5] = N3 * (B[7] * Y5)  - a_atoms[5]
# 
    F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1 
    F[7] = B[0] * Y1 - 1 
    F[8] = B[7] * Y6 - 1
    return (np.sum(F)**2)
#
zGuess = np.ones(9)
z = scipy.optimize.minimize(GibbsEq, zGuess , bounds=bounds)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#

print(z.x)

print(N_T)
for n in N_T:
    if n < 0:
        print('Error: there is negative values for mass in the solution!')
        break 

输出:

Solving time: 0.012451648712158203 s
[1.47559173 2.09905553 1.71722403 1.01828262 1.17529548 1.08815712
 1.00294916 1.00104157 1.08815763]
© www.soinside.com 2019 - 2024. All rights reserved.