我需要计算数据帧熊猫中唯一行的数量。我尝试这个解决方案:pandas - number of unique rows occurrences in dataframe但它会产生错误。
这是我尝试的代码:
import pandas as pd
df = {'x1': ['A','B','A','A','B','A','A','A'], 'x2': [1,3,2,2,3,1,2,3]}
df = pd.DataFrame(df)
print df.groupby(['x1','x2'], as_index=False).count()
这是错误:
Traceback (most recent call last):
File "/home/user/workspace/project/test.py", line 9, in <module>
print df.groupby(['x1','x2'], as_index=False).count()
File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 4372, in count
return self._wrap_agged_blocks(data.items, list(blk))
File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 4274, in _wrap_agged_blocks
index = np.arange(blocks[0].values.shape[1])
IndexError: list index out of range
我究竟做错了什么?
通过使用size
(ps:你可以在最后添加.reset_index()
)来做到这一点
df.groupby(['x1','x2'], as_index=False).size()
Out[1262]:
x1 x2
A 1 2
2 3
3 1
B 3 2
dtype: int64
或者修复你的代码
df.groupby(['x1','x2'])['x2'].count()
Out[1264]:
x1 x2
A 1 2
2 3
3 1
B 3 2
Name: x2, dtype: int64
如果您想了解唯一的组,可以使用ngroups
df.groupby(['x1','x2']).ngroups
Out[1267]: 4
您可以删除重复项:
import pandas as pd
df = {'x1': ['A','B','A','A','B','A','A','A'], 'x2': [1,3,2,2,3,1,2,3]}
df = pd.DataFrame(df)
print(len(df.drop_duplicates()))
返回
4