我在做什么?
我正在开发一个机器学习项目,该项目可以预测美国不同州的电动汽车价格。我的目标是巩固我的实践技能。我已经完成了项目中的所有操作,例如执行 one-hot 编码、训练模型以及在本地主机上运行 Flask 应用程序。 在本地主机中,我使用以下值填写了表单,然后单击提交按钮:
County: Jefferson
City: PORT TOWNSEND
ZIP Code: 98368
Model Year: 2012
Make: NISSAN
Model: LEAF
Electric Vehicle Type: Battery Electric Vehicle (BEV)
CAFV Eligibility: Clean Alternative Fuel Vehicle Eligible
Legislative District: 24
我面临什么问题?
提交表单后,我收到此错误:
ValueError
ValueError: Found unknown categories \['98368'\] in column 2 during transform
Traceback (most recent call last)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 1498, in __call__
return self.wsgi_app(environ, start_response)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 1476, in wsgi_app
response = self.handle_exception(e)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 1473, in wsgi_app
response = self.full_dispatch_request()
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 882, in full_dispatch_request
rv = self.handle_user_exception(e)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 880, in full_dispatch_request
rv = self.dispatch_request()
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\flask\\app.py", line 865, in dispatch_request
return self.ensure_sync(self.view_functions\[rule.endpoint\])(\*\*view_args) # type: ignore\[no-any-return\]
File "G:\\Machine_Learning_Projects\\austin\\electric_vehicle_price_prediction_2\\app\\routes.py", line 38, in predict
price = predict_price(features)
File "G:\\Machine_Learning_Projects\\austin\\electric_vehicle_price_prediction_2\\app\\model.py", line 29, in predict_price
transformed_features = encoder.transform(features_df)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\sklearn\\utils_set_output.py", line 157, in wrapped
data_to_wrap = f(self, X, \*args, \*\*kwargs)
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\sklearn\\preprocessing_encoders.py", line 1027, in transform
X_int, X_mask = self.\_transform(
File "C:\\Users\\austin.conda\\envs\\electric_vehicle_price_prediction_2\\lib\\site-packages\\sklearn\\preprocessing_encoders.py", line 200, in \_transform
raise ValueError(msg)
ValueError: Found unknown categories \['98368'\] in column 2 during transform\
我尝试了什么?
我尝试使用以下代码:
routes.py
文件夹内app
文件的代码:
from flask import render_template, request, jsonify
from app import app
from app.model import predict_price
from jinja2 import Environment, FileSystemLoader, PackageLoader, select_autoescape
@app.route('/')
def index():
env = Environment(
loader=PackageLoader("app"),
autoescape=select_autoescape()
)
template = env.get_template("index.html")
return render_template(template)
@app.route('/predict', methods=\['POST'\])
def predict():
data = request.form.to_dict()
# Convert the form data into the correct format for prediction
features = [
data['county'],
data['city'],
data['zip_code'],
data['model_year'],
data['make'],
data['model'],
data['ev_type'],
data['cafv_eligibility'],
data['legislative_district']
]
# Get the prediction result
price = predict_price(features)
return jsonify({'predicted_price': price})
model.py
文件夹内app
文件的代码:
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestRegressor
import joblib
from flask import Flask, render_template
from jinja2 import Environment, FileSystemLoader, PackageLoader, select_autoescape
env = Environment(
loader=PackageLoader("app"),
autoescape=select_autoescape()
)
model = joblib.load('model/ev_price_model.pkl')
def predict_price(features):
encoder = joblib.load('model/encoder.pkl') # Load encoder if needed
features_df = pd.DataFrame([features], columns=['County', 'City', 'ZIP Code', 'Model Year', 'Make', 'Model', 'Electric Vehicle Type', 'Clean Alternative Fuel Vehicle (CAFV) Eligibility', 'Legislative District'])
# Apply encoding, scaling, etc., if necessary
transformed_features = encoder.transform(features_df)
# Make the prediction
price = model.predict(transformed_features)
return price[0] # Assuming it returns a single value
我的 GitHub 存储库的链接是什么?
这是我的存储库的链接:
https://github.com/SteveAustin583/electric-vehicle-price-prediction
我在期待什么?
我希望能够毫无问题地得到预测结果。因为我已经进行了one-hot编码。
你能帮我解决这个问题吗?预先感谢。
我来自 stackoverflow。我已经在其他地方发布了答案,所以我无法发布另一个答案。 编码器应用于整个数据集,这可能会给出不正确的结果
我认为最好定义单独的变换
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
num_transformer = StandardScaler()
cat_transformer = OneHotEncoder(handle_unknown='ignore')
# create a preprocessor using columntransformer from sklearn
preprocessor = ColumnTransformer(
transformers=[
('num', num_transformer, numerical_cols),
('cat', cat_transformer, categorical_cols),
]
)
# combine into single pipeline
model = Pipeline(steps=[
('preprocessor', preprocessor),
('regressor', RandomForestRegressor(random_state=42))
])
然后申请
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model.fit(X_train, y_train)
同样修改推论。 让我知道这是否有助于解决您的问题。