我有一个有很多句子的文字。我怎样才能使用nltk.ngrams
来处理它?
这是我的代码:
sequence = nltk.tokenize.word_tokenize(raw)
bigram = ngrams(sequence,2)
freq_dist = nltk.FreqDist(bigram)
prob_dist = nltk.MLEProbDist(freq_dist)
number_of_bigrams = freq_dist.N()
但是,上面的代码假设所有句子都是一个序列。但是,句子是分开的,我猜一个句子的最后一个单词与另一个句子的起始单词无关。如何为这样的文本创建bigram
?我还需要基于`freq_dist的prob_dist
和number_of_bigrams
。
有像What are ngram counts and how to implement using nltk?这样的类似问题,但它们主要是关于一系列单词。
您可以使用新的nltk.lm
模块。这是一个例子,首先获取一些数据并对其进行标记:
import os
import requests
import io #codecs
from nltk import word_tokenize, sent_tokenize
# Text version of https://kilgarriff.co.uk/Publications/2005-K-lineer.pdf
if os.path.isfile('language-never-random.txt'):
with io.open('language-never-random.txt', encoding='utf8') as fin:
text = fin.read()
else:
url = "https://gist.githubusercontent.com/alvations/53b01e4076573fea47c6057120bb017a/raw/b01ff96a5f76848450e648f35da6497ca9454e4a/language-never-random.txt"
text = requests.get(url).content.decode('utf8')
with io.open('language-never-random.txt', 'w', encoding='utf8') as fout:
fout.write(text)
# Tokenize the text.
tokenized_text = [list(map(str.lower, word_tokenize(sent)))
for sent in sent_tokenize(text)]
然后是语言建模:
# Preprocess the tokenized text for 3-grams language modelling
from nltk.lm.preprocessing import padded_everygram_pipeline
from nltk.lm import MLE
n = 3
train_data, padded_sents = padded_everygram_pipeline(n, tokenized_text)
model = MLE(n) # Lets train a 3-grams maximum likelihood estimation model.
model.fit(train_data, padded_sents)
获得计数:
model.counts['language'] # i.e. Count('language')
model.counts[['language']]['is'] # i.e. Count('is'|'language')
model.counts[['language', 'is']]['never'] # i.e. Count('never'|'language is')
获得概率:
model.score('is', 'language'.split()) # P('is'|'language')
model.score('never', 'language is'.split()) # P('never'|'language is')
装载笔记本电脑时,Kaggle平台上有一些问题,但在某些时候,这款笔记本应该能够很好地概述nltk.lm
模块https://www.kaggle.com/alvations/n-gram-language-model-with-nltk