repo_name
)组成,每个存储库都有多个文件(
file_name
),并且定义了每个文件的超参数配置。
我正在尝试找到超参数之间的相关性,但是我不确定如何将hyperparam_name
列分解为单独的列?我还需要将分类超级参数转换为数值。我以前从未处理过这样的情况,所以不确定如何解决这个问题。关于我如何做到这一点的任何建议或想法将不胜感激!
1st)展开HyperParam_name列
hyperparam_name
2nd)句柄分类变量
import pandas as pd
# Assuming hyperparam_df is your dataframe
expanded_df = pd.json_normalize(hyperparam_df['hyperparam_name'])
# Concatenate the expanded columns with the original dataframe
hyperparam_df = pd.concat([hyperparam_df.drop(columns=['hyperparam_name']), expanded_df], axis=1)
3rd)处理缺失值
from sklearn.preprocessing import LabelEncoder
# Identify categorical columns
categorical_columns = hyperparam_df.select_dtypes(include=['object']).columns
# Apply one-hot encoding or label encoding
for col in categorical_columns:
if hyperparam_df[col].nunique() > 10: # Example threshold for using label encoding
le = LabelEncoder()
hyperparam_df[col] = le.fit_transform(hyperparam_df[col])
else:
hyperparam_df = pd.get_dummies(hyperparam_df, columns=[col], prefix=[col])
# Fill missing values with a default value, e.g., 0
hyperparam_df = hyperparam_df.fillna(0)
# Alternatively, drop rows with missing values
# hyperparam_df = hyperparam_df.dropna()
例如:
correlation_matrix = hyperparam_df.corr()
# Optionally, visualize the correlation matrix using a heatmap
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.show()