我有一个名为

问题描述 投票:0回答:1
repo_name

)组成,每个存储库都有多个文件(

file_name
),并且定义了每个文件的超参数配置。 我正在尝试找到超参数之间的相关性,但是我不确定如何将

hyperparam_name
列分解为单独的列?我还需要将分类超级参数转换为数值。我以前从未处理过这样的情况,所以不确定如何解决这个问题。关于我如何做到这一点的任何建议或想法将不胜感激!
    

1st)展开HyperParam_name列
hyperparam_name
2nd)句柄分类变量

import pandas as pd # Assuming hyperparam_df is your dataframe expanded_df = pd.json_normalize(hyperparam_df['hyperparam_name']) # Concatenate the expanded columns with the original dataframe hyperparam_df = pd.concat([hyperparam_df.drop(columns=['hyperparam_name']), expanded_df], axis=1)

3rd)处理缺失值

from sklearn.preprocessing import LabelEncoder # Identify categorical columns categorical_columns = hyperparam_df.select_dtypes(include=['object']).columns # Apply one-hot encoding or label encoding for col in categorical_columns: if hyperparam_df[col].nunique() > 10: # Example threshold for using label encoding le = LabelEncoder() hyperparam_df[col] = le.fit_transform(hyperparam_df[col]) else: hyperparam_df = pd.get_dummies(hyperparam_df, columns=[col], prefix=[col])
python pandas correlation hyperparameters
1个回答
0
投票
4th)计算相关性

# Fill missing values with a default value, e.g., 0 hyperparam_df = hyperparam_df.fillna(0) # Alternatively, drop rows with missing values # hyperparam_df = hyperparam_df.dropna()

例如:

correlation_matrix = hyperparam_df.corr() # Optionally, visualize the correlation matrix using a heatmap import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(12, 8)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f') plt.show()

	

最新问题
© www.soinside.com 2019 - 2025. All rights reserved.