pytorch 2.5.1 nvidia 驱动程序 560.35.03 在 Debian 12 上不兼容问题

问题描述 投票:0回答:1

我在 Debian 12 机器上搞砸了驱动程序安装,曾经能够运行 Ollama 和 ComfyUI,但出现 python 错误:

用户警告:CUDA 初始化:CUDA 未知错误 - 这可能是由于环境设置不正确,例如程序启动后更改环境变量 CUDA_VISIBLE_DEVICES。将可用设备设置为零。

我想我已经将范围缩小到 CUDA 和驱动程序版本,但似乎无法修复

我尝试了很多事情,包括以 root 身份运行、以普通用户身份运行、设置 CUDA_VISIBLE_DEVICES=0 和 3080 的 UUID,以及许多版本升级/降级。

可能有帮助的故障排除诊断:

# python3 -m torch.utils.collect_env

<frozen runpy>:128: RuntimeWarning: 'torch.utils.collect_env' found in sys.modules after import of package 'torch.utils', but prior to execution of 'torch.utils.collect_env'; this may result in unpredictable behaviour
Collecting environment information...
/mnt/aiNVMe/ai/ComfyUI/venv/lib/python3.11/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 12 (bookworm) (x86_64)
GCC version: (Debian 12.2.0-14) 12.2.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.36

Python version: 3.11.2 (main, May  2 2024, 11:59:08) [GCC 12.2.0] (64-bit runtime)
Python platform: Linux-6.1.0-23-amd64-x86_64-with-glibc2.36
Is CUDA available: False
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti
Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        43 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               12
On-line CPU(s) list:                  0-11
Vendor ID:                            AuthenticAMD
BIOS Vendor ID:                       Advanced Micro Devices, Inc.
Model name:                           AMD Ryzen 5 3600 6-Core Processor
BIOS Model name:                      AMD Ryzen 5 3600 6-Core Processor               Unknown CPU @ 3.6GHz
BIOS CPU family:                      107
CPU family:                           23
Model:                                113
Thread(s) per core:                   2
Core(s) per socket:                   6
Socket(s):                            1
Stepping:                             0
Frequency boost:                      enabled
CPU(s) scaling MHz:                   94%
CPU max MHz:                          4208.2031
CPU min MHz:                          2200.0000
BogoMIPS:                             7200.16
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es
Virtualization:                       AMD-V
L1d cache:                            192 KiB (6 instances)
L1i cache:                            192 KiB (6 instances)
L2 cache:                             3 MiB (6 instances)
L3 cache:                             32 MiB (2 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-11
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.2.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] triton==3.1.0
[conda] Could not collect

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 560.35.03              Driver Version: 560.35.03      CUDA Version: 12.6     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 Ti     Off |   00000000:09:00.0  On |                  N/A |
| 34%   55C    P8             26W /  350W |      81MiB /  12288MiB |      2%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
                                                                                         
+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      1627      G   /usr/lib/xorg/Xorg                             70MiB |
+-----------------------------------------------------------------------------------------+

# pip list pytorch
Package                  Version
------------------------ ----------
filelock                 3.16.1
fsspec                   2024.10.0
Jinja2                   3.1.4
MarkupSafe               3.0.2
mpmath                   1.3.0
networkx                 3.4.2
numpy                    2.2.0
nvidia-cublas-cu12       12.4.5.8
nvidia-cuda-cupti-cu12   12.4.127
nvidia-cuda-nvrtc-cu12   12.4.127
nvidia-cuda-runtime-cu12 12.4.127
nvidia-cudnn-cu12        9.1.0.70
nvidia-cufft-cu12        11.2.1.3
nvidia-curand-cu12       10.3.5.147
nvidia-cusolver-cu12     11.6.1.9
nvidia-cusparse-cu12     12.3.1.170
nvidia-nccl-cu12         2.21.5
nvidia-nvjitlink-cu12    12.4.127
nvidia-nvtx-cu12         12.4.127
pillow                   11.0.0
pip                      23.0.1
setuptools               66.1.1
sympy                    1.13.1
torch                    2.5.1
torchaudio               2.5.1
torchvision              0.20.1
triton                   3.1.0
typing_extensions        4.12.2

pytorch debian nvidia
1个回答
0
投票

我做到了

dpkg -l | grep nvidia
dpkg -l | grep nvidia-driver

获取 nvidia 相关驱动程序列表。一一做到了

apt purge [packagename]

(有时必须更改要删除的包的顺序)

然后就做了

apt autoclean 
apt autoremove

...清理任何悬而未决的依赖项

重跑

dpkg -l | grep nvidia
dpkg -l | grep nvidia-driver

确保列表为空,然后重新启动,然后执行

https://wiki.debian.org/NvidiaGraphicsDrivers#Version_535.183.01-1

重新安装驱动程序。

然后全新安装 comfyUI

一切似乎又恢复正常了。

© www.soinside.com 2019 - 2024. All rights reserved.