因此,我每次尝试从正态分布中采样1000次,然后根据该正态分布计算20个随机样本的平均值。
unif_sample_size = 20 # sample size
n_samples = 1000 # number of samples
# set up q data frame to contain the results
uniformSampleMeans <- tibble(sampMean = runif(n_samples, unif_sample_size))
# loop through all samples. for each one, take a new random sample,
# compute the mean, and store it in the data frame
for (i in 1:n_samples){
uniformSampleMeans$sampMean[i] = summarize(uniformSampleMeans = mean(unif_sample_size))
}
我成功生成了小标题,但是值是“ NaN”。另外,当我进入for循环时,我得到一个错误。
Error in summarise_(.data, .dots = compat_as_lazy_dots(...)) : argument ".data" is missing, with no default
任何见识将不胜感激!
您不需要dplyr。
rep<-1000
size<-20
# initialize the dataframe
res<-data.frame(rep=NA,mean=NA)
for ( i in 1:rep) {
samp<-rnorm(size) # here you actually create your sample of 20 numbers from the normal distribution
res[i,]$rep<-i #save in the first column the number of the replicate sampling (optional)
res[i,]$mean<-mean(samp) # here you calculate the mean of the random sample and store it into the datafra
}
res