我有一个像这样的数据框:
test_df = pl.DataFrame(
{
"row_id": ["a", "b", "c", "d", "e", "f"],
"s1": [None, 1, 2, 2, 33, 3],
"s2": [None, 32, 12, 2, 0, None],
"s3": [10, 20, 30, 40, 50, 60],
"s4": [0, 34, None, 34, 50, 60],
"s5": [10, 2, None, 123, 3, 432],
}
)
以及像这样的单元格值的字典:
import random
rows = count_table["row_id"].to_list()
r_idx = {row: i for i, row in enumerate(rows)}
columns = [col for col in count_table.columns if col != "row_id"]
adjustments = {
(i, j): random.randint(3, 9) for i in rows for j in columns if count_table[r_idx[i], j] is not None
}
我想找到更新每个单元格值的最有效方法。
谢谢!
目前我正在这样做:
for (i, j), var in adjustments.items():
count_table = count_table.with_columns(
pl.when(pl.col(id_col) == i).then(count_table[j] + var.value()).otherwise(count_table[j]).alias(j)
)
但是我觉得还有更快的方法,尤其是Polars的并行计算能力?
data = [list(k) + [v] for k,v in adjustments.items()]
adjustments_df = (
pl
.DataFrame(data, orient="row", schema=["row_id","column_name","value"])
.pivot(on="column_name",values="value")
)
┌────────┬─────┬──────┬──────┬──────┬──────┐
│ row_id ┆ s3 ┆ s4 ┆ s5 ┆ s1 ┆ s2 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞════════╪═════╪══════╪══════╪══════╪══════╡
│ a ┆ 4 ┆ 7 ┆ 8 ┆ null ┆ null │
│ b ┆ 7 ┆ 5 ┆ 8 ┆ 3 ┆ 4 │
│ c ┆ 6 ┆ null ┆ null ┆ 6 ┆ 4 │
│ d ┆ 8 ┆ 8 ┆ 8 ┆ 8 ┆ 6 │
│ e ┆ 9 ┆ 8 ┆ 5 ┆ 5 ┆ 7 │
│ f ┆ 5 ┆ 6 ┆ 9 ┆ 4 ┆ null │
└────────┴─────┴──────┴──────┴──────┴──────┘
cols = [x for x in test_df.schema if x != "row_id"]
(
test_df
.join(adjustments_df, on="row_id", how="left")
.with_columns(
pl.coalesce(pl.col(f"{col}_right"), pl.col(col)).alias(col)
for col in cols
)
.select(pl.col.row_id, pl.col(cols))
)
┌────────┬──────┬──────┬─────┬──────┬──────┐
│ row_id ┆ s1 ┆ s2 ┆ s3 ┆ s4 ┆ s5 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞════════╪══════╪══════╪═════╪══════╪══════╡
│ a ┆ null ┆ null ┆ 4 ┆ 7 ┆ 8 │
│ b ┆ 3 ┆ 4 ┆ 7 ┆ 5 ┆ 8 │
│ c ┆ 6 ┆ 4 ┆ 6 ┆ null ┆ null │
│ d ┆ 8 ┆ 6 ┆ 8 ┆ 8 ┆ 8 │
│ e ┆ 5 ┆ 7 ┆ 9 ┆ 8 ┆ 5 │
│ f ┆ 4 ┆ null ┆ 5 ┆ 6 ┆ 9 │
└────────┴──────┴──────┴─────┴──────┴──────┘