我正在研究 NaiveBayes 分类器,我可以使用训练后的模型预测单个数据点的值,但我想获得概率值。
数据仅分为两类。并且预测函数返回
0
或 1
。
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.SparkSession
object Test {
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
val spark = SparkSession.builder.appName("Test").master("local[4]").getOrCreate
val dataset = spark.read.option("inferSchema", "true").csv("data/labelled.csv").toDF()
import spark.sqlContext.implicits._
val output = dataset.map(row => {
LabeledPoint(row.getInt(2), Vectors.dense( row.getInt(0) , row.getInt(1)))
})
val Array(training, test) = output.randomSplit(Array(0.7, 0.3),seed = 11L)
training.cache()
val model : NaiveBayesModel = new NaiveBayes().fit(training)
val speed = 110
val hour = 11
val label1 : Double = model.predict(Vectors.dense(speed,hour))
// UPDATE
val label = model.predictProbability(Vectors.dense(speed,hour)) // This not work and raise error[1]
}
}
[1] 使用
model.predictProbability
时出现的错误
错误:类中的(24, 23)方法predictProbability 无法访问 ProbabilisticClassificationModel org.apache.spark.ml.classification.NaiveBayesModel 访问 受保护的方法 PredictProbability 不允许,因为包含 对象 Test 不是类的子类 包裹分类中的 ProbabilisticClassificationModel 其中 目标已确定 val label = model.predictProbability(Vectors.dense(速度,小时))
经过多次研究,我没有在
spark.ml
库中找到此功能,但我可以使用spark.mllib
做到这一点,并且代码应修改为
import org.apache.log4j.{Level, Logger}
// Import NaiveBayes, NaiveBayesModel from mlib
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
// Import LabeledPoint, Vectors from mlib to create dataset
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession
object Test {
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
val spark = SparkSession.builder.appName("Test").master("local[4]").getOrCreate
val dataset = spark.read.option("inferSchema","true").csv("data/labelled.csv").toDF()
import spark.sqlContext.implicits._
// using mllib.regression.LabeledPoint & mllib.linalg.Vectors then transform DF to JavaRDD
val output = dataset.map(row => {
LabeledPoint(row.getInt(2), Vectors.dense( row.getInt(0) , row.getInt(1)))
}).toJavaRDD
val Array(training, test) = output.randomSplit(Array(0.7, 0.3),seed = 11L)
training.cache()
//Using Run instead of fit method
val model : NaiveBayesModel = new NaiveBayes().run(training)
val speed = 110
val hour = 11
// return predict value
val label1 : Double = model.predict(Vectors.dense(speed,hour))
// return array of predict Probabilities `each class Probability`
val testLabel = model.predictProbabilities(Vectors.dense(speed,hour))
}
}
使用 Spark 3.5.1(2024 年),我会将
speed
/ hour
对转换为 Dataset
,然后执行以下操作:
testDataset = ... // define the test dataset with the speed and hour
testDataset = model.transform(testDataset)
此
testDataset
将包含以下附加列:
rawPrediction
:一组 NaiveBayes 值(每个类别一个)probability
:概率数组(每个类别一个);概率之和为 1。prediction
:预测类别