我有3个nD数组,如下所示
x = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
y = [[10, 11, 12],
[13, 14, 15],
[16, 17, 18]]
z = [[ 19, 20, 21],
[ 22, 23, 24],
[ 25, 26, 27]]
[不使用for循环,我试图将每个2x2矩阵元素附加在一起,这样
a1 = [[1,2]
[4,5]]
a2 = [[10,11],
[13,14]]
a3 = [[19,20],
[22,23]]
should append to
a = [[1,10,19],[2,11,20],[4,13,22],[5,14,23]]
Please note, the NxN matrix will always be N = j - 1 where j is x.shape(i,j)
Similarly for other 2x2 matrices, the arrays are as follows
b = [[2,11,20],[3,12,21],[5,14,23],[6,15,24]]
c = [[4,13,22],[5,14,23],[7,16,25],[8,17,26]]
d = [[5,14,23],[6,15,24],[8,17,26],[9,18,27]]
对于大型数据集,for循环会影响运行时,因此我试图查看是否有一种使用NumPy堆栈技术的方法
a1 = np.array([[1,2],[4,5]])
a2 = np.array([[10,11],[13,14]])
a3 = np.array([[19,20],[22,23]])
def everything(a1,a2,a3):
b1 = a1.reshape(-1)
b2 = a2.reshape(-1)
b3 = a3.reshape(-1)
c = np.concatenate((b1, b2, b3))
b = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
def inner(a, i):
while i < len(a):
i = i + 1
return a[i - 1]
def looping(a, c):
k = 0
j = 0
while j < len(a) - 1:
i = 0
while i < len(a):
b[i][j] = inner(c, k)
i += 1
k += 1
j += 1
looping(b3, c)
print(b)
everything(a1,a2,a3)