我有一个数据框,其中包含要解包的嵌套字典列表。
我需要从
priceHistory
以及 WaterConservation
和 EnergyEfficient
中列出的商品获取日期和价格。下面的示例只是一个更大的数据帧的两行,其中每个数据帧行的字典项数量不同。
df = pd.DataFrame(
[[19, [{'priceChangeRate': 0, 'date': '2015-05-29', 'source': 'Public Record', 'postingIsRental': False, 'time': 1432857600000, 'sellerAgent': None, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 275, 'buyerAgent': None, 'event': 'Sold', 'price': 877205}], ['Low flow commode', 'Low flow fixtures', 'Water-Smart Landscaping'],''],
[89, [{'priceChangeRate': 0.090909090909091, 'date': '2023-07-14', 'source': 'Public Record', 'postingIsRental': False, 'time': 1689292800000, 'sellerAgent': {'name': 'seller1', 'photo': {'url': 'https://sellerphoto1.jpg'}, 'profileUrl': '/profile/sellerprofile1/'}, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 308, 'buyerAgent': {'name': 'buyer1', 'photo': {'url': 'https://buyerphoto1.jpg'}, 'profileUrl': '/profile/buyerprofile1/'}, 'event': 'Sold', 'price': 1200000}, {'priceChangeRate': 0, 'date': '2015-08-20', 'source': 'Public Record', 'postingIsRental': False, 'time': 1440028800000, 'sellerAgent': None, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 50, 'buyerAgent': None, 'event': 'Sold', 'price': 195000}],'', ['Windows', 'Insulation', 'HVAC', 'Appliances', 'Lighting']]],
columns=['id', 'priceHistory', 'WaterConservation', 'EnergyEfficient'])
我尝试了太多的东西,无法在这里列出,但这似乎是最有效的(只是为了得到
priceHistory
)(source):
df = pd.concat(
[
df,
df.pop("priceHistory").apply(
lambda x: pd.Series({k: v for d in x for k, v in d.items()})
),
],
axis=1,
)
print(df)
但我收到此错误: 类型错误:“float”对象不可迭代
您可以使用
pd.json_normalize
从priceHistory
获取日期和价格信息。如果不需要,则删除 priceHistory
列,并将 data
和 price
连接到主 df。
例如:
import pandas as pd
df = pd.DataFrame(
[[19, [{'priceChangeRate': 0, 'date': '2015-05-29', 'source': 'Public Record', 'postingIsRental': False, 'time': 1432857600000, 'sellerAgent': None, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 275, 'buyerAgent': None, 'event': 'Sold', 'price': 877205}], ['Low flow commode', 'Low flow fixtures', 'Water-Smart Landscaping'],''],
[89, [{'priceChangeRate': 0.090909090909091, 'date': '2023-07-14', 'source': 'Public Record', 'postingIsRental': False, 'time': 1689292800000, 'sellerAgent': {'name': 'seller1', 'photo': {'url': 'https://sellerphoto1.jpg'}, 'profileUrl': '/profile/sellerprofile1/'}, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 308, 'buyerAgent': {'name': 'buyer1', 'photo': {'url': 'https://buyerphoto1.jpg'}, 'profileUrl': '/profile/buyerprofile1/'}, 'event': 'Sold', 'price': 1200000}, {'priceChangeRate': 0, 'date': '2015-08-20', 'source': 'Public Record', 'postingIsRental': False, 'time': 1440028800000, 'sellerAgent': None, 'showCountyLink': False, 'attributeSource': {'infoString2': 'Public Record', 'infoString3': None, 'infoString1': None}, 'pricePerSquareFoot': 50, 'buyerAgent': None, 'event': 'Sold', 'price': 195000}],'', ['Windows', 'Insulation', 'HVAC', 'Appliances', 'Lighting']]],
columns=['id', 'priceHistory', 'WaterConservation', 'EnergyEfficient'])
price_history_df = pd.json_normalize(df['priceHistory'].explode().tolist(), sep='_')
df = df.drop('priceHistory', axis=1).join(price_history_df[['date', 'price']], how='left')
您可以使用:
s = df.pop('priceHistory').explode()
out = df.join(pd.json_normalize(s).set_index(s.index))
print (out)
id WaterConservation \
0 19 [Low flow commode, Low flow fixtures, Water-Sm...
1 89
1 89
EnergyEfficient priceChangeRate \
0 0.000000
1 [Windows, Insulation, HVAC, Appliances, Lighting] 0.090909
1 [Windows, Insulation, HVAC, Appliances, Lighting] 0.000000
date source postingIsRental time sellerAgent \
0 2015-05-29 Public Record False 1432857600000 NaN
1 2023-07-14 Public Record False 1689292800000 NaN
1 2015-08-20 Public Record False 1440028800000 NaN
showCountyLink pricePerSquareFoot buyerAgent event price \
0 False 275 NaN Sold 877205
1 False 308 NaN Sold 1200000
1 False 50 NaN Sold 195000
attributeSource.infoString2 attributeSource.infoString3 \
0 Public Record None
1 Public Record None
1 Public Record None
attributeSource.infoString1 sellerAgent.name sellerAgent.photo.url \
0 None NaN NaN
1 None seller1 https://sellerphoto1.jpg
1 None NaN NaN
sellerAgent.profileUrl buyerAgent.name buyerAgent.photo.url \
0 NaN NaN NaN
1 /profile/sellerprofile1/ buyer1 https://buyerphoto1.jpg
1 NaN NaN NaN
buyerAgent.profileUrl
0 NaN
1 /profile/buyerprofile1/
1 NaN