如何在pytorch神经网络中为循环创建变量名

问题描述 投票:0回答:1

我正在PyTorch中实现一个简单的前馈神经扭曲。但是我想知道是否有更好的方法向网络添加灵活的层数?也许是在循环中命名它们,但我听说那不可能吗?

目前,我正在这样做

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

    def __init__(self, input_dim, output_dim, hidden_dim):
        super(Net, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.layer_dim = len(hidden_dim)
        self.fc1 = nn.Linear(self.input_dim, self.hidden_dim[0])
        i = 1
        if self.layer_dim > i:
            self.fc2 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc3 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc4 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc5 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc6 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc7 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        if self.layer_dim > i:
            self.fc8 = nn.Linear(self.hidden_dim[i-1], self.hidden_dim[i])
            i += 1
        self.fcn = nn.Linear(self.hidden_dim[-1], self.output_dim)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.relu(self.fc1(x))
        i = 1
        if self.layer_dim > i:
            x = F.relu(self.fc2(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc3(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc4(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc5(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc6(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc7(x))
            i += 1
        if self.layer_dim > i:
            x = F.relu(self.fc8(x))
            i += 1
        x = F.softmax(self.fcn(x))
        return x
python neural-network pytorch torch
1个回答
2
投票

您可以将图层放入ModuleList容器:

ModuleList

对于图层使用import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim): super(Net, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.hidden_dim = hidden_dim current_dim = input_dim self.layers = nn.ModuleList() for hdim in hidden_dim: self.layers.append(nn.Linear(current_dim, hdim)) current_dim = hdim self.layers.append(nn.Linear(current_dim, output_dim)) def forward(self, x): for layer in self.layers[:-1]: x = F.relu(layer(x)) out = F.softmax(self.layers[-1](x)) return out 非常重要,而不仅仅是简单的python列表。请参阅pytorch Containers以了解原因。

© www.soinside.com 2019 - 2024. All rights reserved.