import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
# Load the wine quality dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
data = pd.read_csv(url) # Adjust the separator if needed
# Explore the dataset
data.head()
# Split the dataset into features (X) and target variable (y)
X = data.drop('quality', axis=1)
y = data['quality']
# Split the data into a training and test set (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Creating a linear regression model
model = LinearRegression()
# Training the model on the training data
model.fit(X_train, y_train)
# Making predictions on the test data
y_pred = model.predict(X_test)
# Evaluating the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")
# Plotting as predicted vs. actual
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Quality")
plt.ylabel("Predicted Quality")
plt.title("Actual vs. Predicted Wine Quality")
plt.show()
上面的代码给出以下错误:
PS C:\Users\JARVIS\Desktop\wine+quality> python -u "c:\Users\JARVIS\Desktop\wine+quality\deleteit.py" 回溯(最近一次调用最后一次): 文件“c:\Users\JARVIS\Desktop\wine+quality\deleteit.py”,第 16 行,位于 X = data.drop('质量', axis=1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 文件“C:\ Users \ JARVIS \ AppData \ Local \ Programs \ Python \ Python311 \ Lib \ site-packages \ panda