如何在nn.Sequential模型中使用自定义torch.autograd.Function

问题描述 投票:1回答:1

有什么方法可以在torch.autograd.Function对象中使用自定义nn.Sequential,还是应该显式地将带有前进功能的nn.Module对象使用。具体来说,我正在尝试实现一个稀疏的自动编码器,我需要将代码(隐藏表示)的L1距离添加到损失中。我在下面定义了自定义torch.autograd.Function L1Penalty,然后尝试在nn.Sequential对象中使用它,如下所示。但是,当我运行时,出现错误TypeError: __main__.L1Penalty is not a Module subclass如何解决此问题?

class L1Penalty(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, l1weight = 0.1):
        ctx.save_for_backward(input)
        ctx.l1weight = l1weight
        return input, None

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_variables
        grad_input = input.clone().sign().mul(ctx.l1weight)
        grad_input+=grad_output
        return grad_input
model = nn.Sequential(
    nn.Linear(10, 10),
    nn.ReLU(),
    nn.Linear(10, 6),
    nn.ReLU(),
    # sparsity
    L1Penalty(),
    nn.Linear(6, 10),
    nn.ReLU(),
    nn.Linear(10, 10),
    nn.ReLU()
).to(device)
python pytorch torch
1个回答
0
投票

nn.Module API似乎工作正常,但您不应该在L1Penalty forward方法中返回None。

import torch, torch.nn as nn

class L1Penalty(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, l1weight = 0.1):
        ctx.save_for_backward(input)
        ctx.l1weight = l1weight
        return input

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_variables
        grad_input = input.clone().sign().mul(ctx.l1weight)
        grad_input+=grad_output
        return grad_input


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(10,10)
        self.fc2 = nn.Linear(10,6)
        self.fc3 = nn.Linear(6,10)
        self.fc4 = nn.Linear(10,10)
        self.relu = nn.ReLU(inplace=True)
        self.penalty = L1Penalty()

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.penalty.apply(x)
        x = self.fc3(x)
        x = self.relu(x)
        x = self.fc4(x)
        x = self.relu(x)
        return x


model = Model()
a = torch.rand(50,10)
b = model(a)
print(b.shape)

© www.soinside.com 2019 - 2024. All rights reserved.