我正在使用 ViT 的特征提取器,如here所述。
并注意到一种我无法完全理解的奇怪行为。
加载 Colab 笔记本中的数据集后,我看到:
ds['train'].features
{'image_file_path': Value(dtype='string', id=None), 'image':
Image(mode=None, decode=True, id=None), 'labels':
ClassLabel(names=['angular_leaf_spot', 'bean_rust', 'healthy'],
id=None)}
我们可以通过两种方式评估这些特征:
ds['train']['labels'][0:5]
[0, 0, 0, 0, 0]
ds['train'][0:2]
{'image_file_path':
['/home/albert/.cache/huggingface/datasets/downloads/extracted/967f0d9f61a7a8de58892c6fab6f02317c06faf3e19fba6a07b0885a9a7142c7/train/angular_leaf_spot/angular_leaf_spot_train.0.jpg',
'/home/albert/.cache/huggingface/datasets/downloads/extracted/967f0d9f61a7a8de58892c6fab6f02317c06faf3e19fba6a07b0885a9a7142c7/train/angular_leaf_spot/angular_leaf_spot_train.1.jpg'],
'image': [<PIL.JpegImagePlugin.JpegImageFile image mode=RGB
size=500x500>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB
size=500x500>], 'labels': [0, 0]}
但是之后
from transformers import ViTFeatureExtractor
model_name_or_path = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path)
ds = load_dataset('beans')
def transform(example_batch):
inputs = feature_extractor([x for x in example_batch['image']], return_tensors='pt')
inputs['labels'] = example_batch['labels']
return inputs
prepared_ds = ds.with_transform(transform)
我们看到功能被保留:
prepared_ds['train'].features
{'image_file_path': Value(dtype='string', id=None), 'image':
Image(mode=None, decode=True, id=None), 'labels':
ClassLabel(names=['angular_leaf_spot', 'bean_rust', 'healthy'],
id=None)}
prepared_ds['train'][0:2]
{'pixel_values': tensor([[[[-0.5686, -0.5686, -0.5608, ..., -0.0275,
0.1843, -0.2471],
...,
[-0.5843, -0.5922, -0.6078, ..., 0.2627, 0.1608, 0.2000]],
[[-0.7098, -0.7098, -0.7490, ..., -0.3725, -0.1608, -0.6000],
...,
[-0.8824, -0.9059, -0.9216, ..., -0.2549, -0.2000, -0.1216]]],
[[[-0.5137, -0.4902, -0.4196, ..., -0.0275, -0.0039, -0.2157],
...,
[-0.5216, -0.5373, -0.5451, ..., -0.1294, -0.1529, -0.2627]],
[[-0.1843, -0.2000, -0.1529, ..., 0.2157, 0.2078, -0.0902],
...,
[-0.7725, -0.7961, -0.8039, ..., -0.3725, -0.4196, -0.5451]],
[[-0.7569, -0.8510, -0.8353, ..., -0.3255, -0.2706, -0.5608],
...,
[-0.5294, -0.5529, -0.5608, ..., -0.1686, -0.1922, -0.3333]]]]), 'labels': [0, 0]}
但是当我尝试直接访问标签时
prepared_ds['train']['labels']
我收到一条关键错误消息:
```
---------------------------------------------------------------------------
KeyError Traceback (most recent call last) Cell In[32], line 1
----> 1 prepared_ds['train']['labels']
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/arrow_dataset.py:2872, in Dataset.__getitem__(self, key) 2870 def __getitem__(self, key):
# noqa: F811 2871 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 2872 return self._getitem(key)
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/arrow_dataset.py:2857, in Dataset._getitem(self, key, **kwargs) 2855 formatter = get_formatter(format_type, features=self._info.features,
**format_kwargs) 2856 pa_subtable = query_table(self._data, key, indices=self._indices)
-> 2857 formatted_output = format_table( 2858 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2859 ) 2860 return formatted_output
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/formatting/formatting.py:639, in format_table(table, key, formatter, format_columns, output_all_columns)
637 python_formatter = PythonFormatter(features=formatter.features)
638 if format_columns is None:
--> 639 return formatter(pa_table, query_type=query_type)
640 elif query_type == "column":
641 if key in format_columns:
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/formatting/formatting.py:405, in Formatter.__call__(self, pa_table, query_type)
403 return self.format_row(pa_table)
404 elif query_type == "column":
--> 405 return self.format_column(pa_table)
406 elif query_type == "batch":
407 return self.format_batch(pa_table)
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/formatting/formatting.py:501, in CustomFormatter.format_column(self, pa_table)
500 def format_column(self, pa_table: pa.Table) -> ColumnFormat:
--> 501 formatted_batch = self.format_batch(pa_table)
502 if hasattr(formatted_batch, "keys"):
503 if len(formatted_batch.keys()) > 1:
File ~/anaconda3/envs/LLM/lib/python3.12/site-packages/datasets/formatting/formatting.py:522, in CustomFormatter.format_batch(self, pa_table)
520 batch = self.python_arrow_extractor().extract_batch(pa_table)
521 batch = self.python_features_decoder.decode_batch(batch)
--> 522 return self.transform(batch)
Cell In[12], line 5, in transform(example_batch)
3 def transform(example_batch):
4 # Take a list of PIL images and turn them to pixel values
----> 5 inputs = feature_extractor([x for x in example_batch['image']], return_tensors='pt')
7 # Don't forget to include the labels!
8 inputs['labels'] = example_batch['labels']
KeyError: 'image'
```
听起来错误是因为特征提取器添加了“pixel_values”,但特征保留为“image” 但这似乎也意味着尝试重新申请
transform
...
另外:无法将数据集保存到磁盘
prepared_ds.save_to_disk(img_path)
```
---------------------------------------------------------------------------
TypeError Traceback (most recent call last) Cell In[21], line 1
----> 1 dataset.save_to_disk(img_path)
File ~/anaconda3/envs/LLM/lib/python3.13/site-packages/datasets/arrow_dataset.py:1503, in Dataset.save_to_disk(self, dataset_path, max_shard_size, num_shards, num_proc, storage_options) 1501 json.dumps(state["_format_kwargs"][k]) 1502 except TypeError as e:
-> 1503 raise TypeError( 1504 str(e) + f"\nThe format kwargs must be JSON serializable, but key '{k}' isn't." 1505 ) from None 1506 # Get json serializable dataset info 1507 dataset_info = asdict(self._info)
TypeError: Object of type function is not JSON serializable The format kwargs must be JSON serializable, but key 'transform' isn't.
```
注意该笔记本中的原始代码完美运行(训练、评估等)。我刚刚收到此错误,因为我尝试检查数据集,尝试保存生成的数据集等以探索数据集对象...
在
with_transform()
或set_transform()
之后,数据集结构不应该以类似的方式访问吗?如果我们只是尝试访问其中一个功能,为什么它会再次调用转换函数?
我希望你能对这种行为有所了解......
这不是您获取数据集项目的方式。首先你需要标明切片:
prepared_ds_batch = prepared_ds['train'][0:10]
通过使用索引。
然后就可以使用钥匙
labels
prepared_ds_batch['labels']
[out]: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
关于保存数据的第二个问题:由于转换函数的已知问题,您无法保存数据:https://github.com/huggingface/datasets/issues/6221
但是,您可以将数据集另存为
prepared_ds.with_format(None).save_to_disk('test_path')
。但是从磁盘再次加载后,您需要再次启动转换功能。
编辑:您不能使用
prepared_ds['train']['labels']
,因为“标签”预计是表示项目索引的整数。