我正在学习如何使用SIMD进行图像处理。但是,我想知道为什么使用 SIMD 后性能没有太大改善。
static void GrayViaParallel(BitmapData org, BitmapData des)
{
int width = org.Width;
int height = org.Height;
var orgp = (byte*)org.Scan0.ToPointer();
var desp = (byte*)des.Scan0.ToPointer();
Parallel.For(0, height, i =>
{
int orgSd = i * org.Stride;
int desSd = i * des.Stride;
for (int j = 0; j < width; j++)
{
// Red Green Blue
desp[desSd] = (byte)((orgp[orgSd + 2] * 19595 + orgp[orgSd + 1] * 38469 + orgp[orgSd] * 7472) >> 16);
desSd++;
orgSd += 3;
}
});
}
static void GrayViaParallelAndSIMD(byte* src, byte* dst, int count)
{
var Coeleft = Vector128.Create(mulBlue, mulGreen, mulRed, mulBlue, mulGreen, mulRed, mulBlue, mulGreen);
var CoeRight = Vector128.Create(mulRed, mulBlue, mulGreen, mulRed, mulBlue, mulGreen, mulRed, 0);
int allPixels = count * 3;
byte* srcEnd = src + allPixels; //Is it wrong?
int stride = 15; //Proceed 15 bytes per step
int loopCount = (int)((srcEnd - src) / stride);
Parallel.For(0, loopCount, i =>
{
int curPos = (i + 1) * stride;
if (curPos < allPixels) //If not added, it will exceed the image data
{
// Load the first 16 bytes of the pixels
var _1st16bytes = Sse2.LoadVector128(src + i * stride);
// Get the first 8 bytes
var low = Sse2.UnpackLow(_1st16bytes, Vector128<byte>.Zero).AsUInt16();
//Get the next 8 bytes
var high = Sse2.UnpackHigh(_1st16bytes, Vector128<byte>.Zero).AsUInt16();
// Calculate the first 8 bytes
var lowMul = Sse2.MultiplyHigh(Coeleft, low);
// Calculate the next 8 bytes
var highMul = Sse2.MultiplyHigh(CoeRight, high);
// Blue Green Red
var px1 = lowMul.GetElement(0) + lowMul.GetElement(1) + lowMul.GetElement(2);
var px2 = lowMul.GetElement(3) + lowMul.GetElement(4) + lowMul.GetElement(5);
var px3 = lowMul.GetElement(6) + lowMul.GetElement(7) + highMul.GetElement(0);
var px4 = highMul.GetElement(1) + highMul.GetElement(2) + highMul.GetElement(3);
var px5 = highMul.GetElement(4) + highMul.GetElement(5) + highMul.GetElement(6);
//15 bytes for 5 pixels
var i5 = i * 5;
dst[i5 ] = (byte)px1;
dst[i5 + 1] = (byte)px2;
dst[i5 + 2] = (byte)px3;
dst[i5 + 3] = (byte)px4;
dst[i5 + 4] = (byte)px5;
}
});
}
请问有更好的方法吗?或者我该如何增强它? 如果有任何建议,我将非常感激。
我尝试过不同的 SIMD 方法,但似乎都效果不佳。我正在寻求效率的大幅提升。
GetElement 方法是标量操作,不具备 SIMD 硬件加速功能。为了获得更好的 SIMD 硬件加速,您需要尽可能避免标量运算。
对于24位到8位灰度转换,可以采用这种方式:从源位图中一次读取3个向量,进行3元组解交织操作,得到R、G、B平面数据。随后,使用矢量化乘法和加法来计算灰度值。结果是一个存储灰度值的 1-向量,可以将其存储到目标位图。
例如,SSE指令集使用128位向量,其中1个向量为16字节。从源位图中一次读取 3 个向量相当于读取 48 个字节,即 16 个 RGB 像素。最后,将一个向量存储到目标位图中意味着写入 16 个字节,即 16 个灰度像素。
对于去交错 3 元素组,可以使用 shuffle 类别的指令来完成。例如,对于X86架构中的128位向量,可以使用SSSE3中的_mm_shuffle_epi8指令,该指令对应于.NET中的
Ssse3.Shuffle
方法。源码如下
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part0 = Vector128.Create((sbyte)0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_X_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 4, 7, 10, 13).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part0 = Vector128.Create((sbyte)1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Y_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 5, 8, 11, 14).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part0 = Vector128.Create((sbyte)2, 5, 8, 11, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part1 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, 1, 4, 7, 10, 13, -1, -1, -1, -1, -1, -1).AsByte();
static readonly Vector128<byte> YGroup3Unzip_Shuffle_Byte_Z_Part2 = Vector128.Create((sbyte)-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 3, 6, 9, 12, 15).AsByte();
public static Vector128<byte> YGroup3Unzip(Vector128<byte> data0, Vector128<byte> data1, Vector128<byte> data2, out Vector128<byte> y, out Vector128<byte> z) {
var f0A = YGroup3Unzip_Shuffle_Byte_X_Part0;
var f0B = YGroup3Unzip_Shuffle_Byte_X_Part1;
var f0C = YGroup3Unzip_Shuffle_Byte_X_Part2;
var f1A = YGroup3Unzip_Shuffle_Byte_Y_Part0;
var f1B = YGroup3Unzip_Shuffle_Byte_Y_Part1;
var f1C = YGroup3Unzip_Shuffle_Byte_Y_Part2;
var f2A = YGroup3Unzip_Shuffle_Byte_Z_Part0;
var f2B = YGroup3Unzip_Shuffle_Byte_Z_Part1;
var f2C = YGroup3Unzip_Shuffle_Byte_Z_Part2;
var rt0 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f0A), Ssse3.Shuffle(data1, f0B)), Ssse3.Shuffle(data2, f0C));
var rt1 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f1A), Ssse3.Shuffle(data1, f1B)), Ssse3.Shuffle(data2, f1C));
var rt2 = Sse2.Or(Sse2.Or(Ssse3.Shuffle(data0, f2A), Ssse3.Shuffle(data1, f2B)), Ssse3.Shuffle(data2, f2C));
y = rt1;
z = rt2;
return rt0;
}
为了更轻松地跨平台编写向量算法,我开发了VectorTraits库,它已经集成了上述算法。该库提供了方法 Vectors.YGroup3Unzip 方法。该方法是跨平台的,使用各个平台的shuffle指令。
_mm256_shuffle_epi8
和其他指令。vqvtbl1q_u8
说明。i8x16.swizzle
说明。通过
Vectors.YGroup3Unzip
的方法,很容易写出24位转8位的灰度算法。灰度系数的精度为8位,因此需要将8位数据扩展为16位,然后进行乘法和加法计算。最后,16位数据被缩小为8位。源码如下
public static unsafe void UseVectorsDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {
const int cbPixel = 3; // Bgr24
const int shiftPoint = 8;
const int mulPoint = 1 << shiftPoint; // 0x100
const ushort mulRed = (ushort)(0.299 * mulPoint + 0.5); // 77
const ushort mulGreen = (ushort)(0.587 * mulPoint + 0.5); // 150
const ushort mulBlue = mulPoint - mulRed - mulGreen; // 29
Vector<ushort> vmulRed = new Vector<ushort>(mulRed);
Vector<ushort> vmulGreen = new Vector<ushort>(mulGreen);
Vector<ushort> vmulBlue = new Vector<ushort>(mulBlue);
int vectorWidth = Vector<byte>.Count;
int maxX = width - vectorWidth;
byte* pRow = pSrc;
byte* qRow = pDst;
for (int i = 0; i < height; i++) {
Vector<byte>* pLast = (Vector<byte>*)(pRow + maxX * cbPixel);
Vector<byte>* qLast = (Vector<byte>*)(qRow + maxX * 1);
Vector<byte>* p = (Vector<byte>*)pRow;
Vector<byte>* q = (Vector<byte>*)qRow;
for (; ; ) {
Vector<byte> r, g, b, gray;
Vector<ushort> wr0, wr1, wg0, wg1, wb0, wb1;
// Load.
b = Vectors.YGroup3Unzip(p[0], p[1], p[2], out g, out r);
// widen(r) * mulRed + widen(g) * mulGreen + widen(b) * mulBlue
Vector.Widen(r, out wr0, out wr1);
Vector.Widen(g, out wg0, out wg1);
Vector.Widen(b, out wb0, out wb1);
wr0 = Vectors.Multiply(wr0, vmulRed);
wr1 = Vectors.Multiply(wr1, vmulRed);
wg0 = Vectors.Multiply(wg0, vmulGreen);
wg1 = Vectors.Multiply(wg1, vmulGreen);
wb0 = Vectors.Multiply(wb0, vmulBlue);
wb1 = Vectors.Multiply(wb1, vmulBlue);
wr0 = Vector.Add(wr0, wg0);
wr1 = Vector.Add(wr1, wg1);
wr0 = Vector.Add(wr0, wb0);
wr1 = Vector.Add(wr1, wb1);
// Shift right and narrow.
wr0 = Vectors.ShiftRightLogical_Const(wr0, shiftPoint);
wr1 = Vectors.ShiftRightLogical_Const(wr1, shiftPoint);
gray = Vector.Narrow(wr0, wr1);
// Store.
*q = gray;
// Next.
if (p >= pLast) break;
p += cbPixel;
++q;
if (p > pLast) p = pLast; // The last block is also use vector.
if (q > qLast) q = qLast;
}
pRow += strideSrc;
qRow += strideDst;
}
}
上面源码中的
Vectors.ShiftRightLogical_Const
是VectorTraits库提供的方法。它取代了 Vector.ShiftRightLogical
中新增的 .NET 7.0
方法,并允许早期版本的 .NET 使用逻辑右移。
Vectors.Multiply
也是VectorTraits库提供的方法。它避免了无符号类型有时无法硬件加速的问题。
然后为算法编写基准代码。
[Benchmark]
public void UseVectors() {
UseVectorsDo(_sourceBitmapData, _destinationBitmapData, false);
}
[Benchmark]
public void UseVectorsParallel() {
UseVectorsDo(_sourceBitmapData, _destinationBitmapData, true);
}
public static unsafe void UseVectorsDo(BitmapData src, BitmapData dst, bool useParallel = false) {
int vectorWidth = Vector<byte>.Count;
int width = src.Width;
int height = src.Height;
if (width <= vectorWidth) {
ScalarDo(src, dst);
return;
}
int strideSrc = src.Stride;
int strideDst = dst.Stride;
byte* pSrc = (byte*)src.Scan0.ToPointer();
byte* pDst = (byte*)dst.Scan0.ToPointer();
int processorCount = Environment.ProcessorCount;
int batchSize = height / (processorCount * 2);
bool allowParallel = useParallel && (batchSize > 0) && (processorCount > 1);
if (allowParallel) {
int batchCount = (height + batchSize - 1) / batchSize; // ceil((double)length / batchSize)
Parallel.For(0, batchCount, i => {
int start = batchSize * i;
int len = batchSize;
if (start + len > height) len = height - start;
byte* pSrc2 = pSrc + start * strideSrc;
byte* pDst2 = pDst + start * strideDst;
UseVectorsDoBatch(pSrc2, strideSrc, width, len, pDst2, strideDst);
});
} else {
UseVectorsDoBatch(pSrc, strideSrc, width, height, pDst, strideDst);
}
}
完整源代码位于 Bgr24ToGray8Benchmark.cs
X86架构上的基准测试结果如下。
BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4460/23H2/2023Update/SunValley3)
AMD Ryzen 7 7840H w/ Radeon 780M Graphics, 1 CPU, 16 logical and 8 physical cores
.NET SDK 8.0.403
[Host] : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI
DefaultJob : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI
| Method | Width | Mean | Error | StdDev | Ratio | RatioSD | Code Size |
|--------------------- |------ |-------------:|-----------:|-----------:|------:|--------:|----------:|
| Scalar | 1024 | 1,028.55 us | 12.545 us | 11.735 us | 1.00 | 0.02 | 152 B |
| UseVectors | 1024 | 94.06 us | 0.606 us | 0.537 us | 0.09 | 0.00 | NA |
| UseVectorsParallel | 1024 | 24.98 us | 0.390 us | 0.365 us | 0.02 | 0.00 | NA |
| PeterParallelScalar | 1024 | 216.47 us | 1.719 us | 1.524 us | 0.21 | 0.00 | NA |
| | | | | | | | |
| Scalar | 2048 | 4,092.26 us | 21.098 us | 18.703 us | 1.00 | 0.01 | 152 B |
| UseVectors | 2048 | 507.70 us | 9.626 us | 11.459 us | 0.12 | 0.00 | NA |
| UseVectorsParallel | 2048 | 118.98 us | 1.025 us | 0.959 us | 0.03 | 0.00 | NA |
| PeterParallelScalar | 2048 | 803.30 us | 9.226 us | 8.630 us | 0.20 | 0.00 | NA |
| | | | | | | | |
| Scalar | 4096 | 16,391.12 us | 121.643 us | 113.785 us | 1.00 | 0.01 | 152 B |
| UseVectors | 4096 | 2,472.16 us | 32.452 us | 30.356 us | 0.15 | 0.00 | NA |
| UseVectorsParallel | 4096 | 2,034.85 us | 33.074 us | 30.937 us | 0.12 | 0.00 | NA |
| PeterParallelScalar | 4096 | 3,139.85 us | 32.657 us | 27.270 us | 0.19 | 0.00 | NA |
相同的源代码可以在Arm架构上运行。基准测试结果如下。
BenchmarkDotNet v0.14.0, macOS Sequoia 15.0.1 (24A348) [Darwin 24.0.0]
Apple M2, 1 CPU, 8 logical and 8 physical cores
.NET SDK 8.0.204
[Host] : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD [AttachedDebugger]
DefaultJob : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD
| Method | Width | Mean | Error | StdDev | Ratio | RatioSD |
|--------------------- |------ |-------------:|----------:|----------:|------:|--------:|
| Scalar | 1024 | 635.31 us | 0.537 us | 0.448 us | 1.00 | 0.00 |
| UseVectors | 1024 | 127.04 us | 0.567 us | 0.474 us | 0.20 | 0.00 |
| UseVectorsParallel | 1024 | 46.37 us | 0.336 us | 0.314 us | 0.07 | 0.00 |
| PeterParallelScalar | 1024 | 202.19 us | 1.025 us | 0.959 us | 0.32 | 0.00 |
| | | | | | | |
| Scalar | 2048 | 2,625.64 us | 1.795 us | 1.402 us | 1.00 | 0.00 |
| UseVectors | 2048 | 521.40 us | 0.301 us | 0.282 us | 0.20 | 0.00 |
| UseVectorsParallel | 2048 | 152.11 us | 3.548 us | 10.064 us | 0.06 | 0.00 |
| PeterParallelScalar | 2048 | 711.00 us | 1.806 us | 1.601 us | 0.27 | 0.00 |
| | | | | | | |
| Scalar | 4096 | 10,457.09 us | 5.697 us | 5.051 us | 1.00 | 0.00 |
| UseVectors | 4096 | 2,058.16 us | 4.110 us | 3.643 us | 0.20 | 0.00 |
| UseVectorsParallel | 4096 | 1,152.15 us | 21.134 us | 21.703 us | 0.11 | 0.00 |
| PeterParallelScalar | 4096 | 2,897.94 us | 56.893 us | 91.871 us | 0.28 | 0.01 |