我在PyTorch中写了一个神经网络,我想在这个网络上比较两种不同损失函数的结果
我应该开始制作两个不同的网络实例,并像这样测试每个网络的一个丢失功能
network_w_loss_1 = ANN().cuda()
network_w_loss_2 = ANN().cuda()
crit_loss_1 = loss_1()
crit_loss_2 = loss_2()
opt_loss_1 = optim.SGD('params')
opt_loss_2 = optim.SGD('params')
for epoch in range(num_epochs):
for i, dat in enumerate(data_loader):
#unpack data
opt_loss_1.zero_grad()
opt_loss_2.zero_grad()
output1 = network_w_loss_1('params')
output2 = network_w_loss_2('params')
los_1 = crit_loss_1(output1)
los_2 = crit_loss_2(output2)
los_1.backward()
los_2.backward()
opt_loss_1.step()
opt_loss_2.step()
或者我可以逃脱这样做?
network = ANN().cuda()
crit_loss_1 = loss_1()
crit_loss_2 = loss_2()
opt = optim.SGD('params')
for epoch in range(num_epochs):
for i, dat in enumerate(data_loader):
#unpack data
opt.zero_grad()
output1 = network('params')
output2 = network('params')
los_1 = crit_loss_1(output1)
los_2 = crit_loss_2(output2)
los_1.backward()
los_2.backward()
opt.step()
我使用的是Python 3.6.5和PyTorch 0.4.0
你必须做两个不同的实例。否则,您只是在两个损失之间交替训练一个网络(两个损失都会更新其参数)。