我正在尝试从金融创建一个数据框和一个 CSV 股票,但我不断收到 NA、NA、AAPL... 作为我的第一行,我该如何修复它?
我的代码:
import os
# Define the list of stock symbols and date range
stocks = ["AAPL", "AMZN", "NFLX"]
start_date = "2020-01-01"
end_date = "2023-01-01"
stock_data_path = "***/data"
# Ensure the save path exist
os.makedirs(stock_data_path, exist_ok=True)
# Loop through the stocks and download the data
for stock in stocks:
print(f"Fetching data for {stock}...")
data = yf.download(stock, start=start_date, end=end_date)
# Reset the index to have Date as a column
data.reset_index(inplace=True)
# Add the Ticker column
data['Ticker'] = stock
# Remove the 0's row
# Keep only necessary columns
data = data[["Ticker", "Date", "Open", "Close", "High", "Low", "Volume"]]
# Save the data to a CSV file
file_path = os.path.join(stock_data_path, f"{stock}_stock_data.csv")
data.to_csv(file_path, index=False)
# Combine all files into a single DataFrame and save to CSV
for stock in stocks:
file_path = os.path.join(stock_data_path, f"{stock}_stock_data.csv")
stock_data = pd.read_csv(file_path)
# Concating so the all_data will have only the 7 columns that are shared by all the stocks
if stock == stocks[0]:
all_data = stock_data
else:
all_data = pd.concat([all_data, stock_data], ignore_index=True)
# Save combined data to CSV
all_data_file_path = os.path.join(stock_data_path, "all_stocks_data.csv")
all_data.to_csv(all_data_file_path, index=False)
所有数据
谢谢您的帮助
添加一行
data.columns=["Ticker", "Date", "Open", "Close", "High", "Low", "Volume"]
此行之后
data = data[["Ticker", "Date", "Open", "Close", "High", "Low", "Volume"]]
= = =
复制您的代码并添加新行,
import yfinance as yf
import pandas as pd
import os
# Define the list of stock symbols and date range
stocks = ["AAPL", "AMZN", "NFLX"]
start_date = "2020-01-01"
end_date = "2023-01-01"
stock_data_path = "/data"
# Ensure the save path exist
os.makedirs(stock_data_path, exist_ok=True)
# Loop through the stocks and download the data
for stock in stocks:
print(f"Fetching data for {stock}...")
data = yf.download(stock, start=start_date, end=end_date)
#print(data)
#x1=input("something1")
# Reset the index to have Date as a column
data.reset_index(inplace=True)
#print(data)
#x1=input("something2")
# Add the Ticker column
data['Ticker'] = stock
#print(data)
#x1=input("something3")
# Remove the 0's row
# Keep only necessary columns
data = data[["Ticker", "Date", "Open", "Close", "High", "Low", "Volume"]]
data.columns=["Ticker", "Date", "Open", "Close", "High", "Low", "Volume"]
# Save the data to a CSV file
file_path = os.path.join(stock_data_path, f"{stock}_stock_data.csv")
data.to_csv(file_path, index=False)
# Combine all files into a single DataFrame and save to CSV
for stock in stocks:
file_path = os.path.join(stock_data_path, f"{stock}_stock_data.csv")
stock_data = pd.read_csv(file_path)
# Concating so the all_data will have only the 7 columns that are shared by all the stocks
if stock == stocks[0]:
all_data = stock_data
else:
all_data = pd.concat([all_data, stock_data], ignore_index=True)
# Save combined data to CSV
all_data_file_path = os.path.join(stock_data_path, "all_stocks_data.csv")
all_data.to_csv(all_data_file_path, index=False)