如何使用库规范化Python中的数据挖掘

问题描述 投票:0回答:3

如何规范数据挖掘MinMax来自Python 3中的csv with library这是我的数据示例

RT      NK    NB    SU    SK    P    TNI IK   IB     TARGET
84876   902  1192  2098  3623  169   39  133  1063   94095
79194   902  1050  2109  3606  153   39  133   806   87992
75836   902  1060  1905  3166  161   39  133   785   83987
75571   902   112  1878  3190  158   39  133   635   82618
83797  1156   134  1900  3518  218   39  133   709   91604
91648  1291   127  2225  3596  249   39  133   659   99967
79063  1346   107  1844  3428  247   39  133   591   86798
84357  1018   122  2152  3456  168   39  133   628   92073
90045   954   110  2044  3638  174   39  133   734   97871
83318   885   198  1872  3691  173   39  133   778   91087
93300  1044   181  2077  4014  216   39  133   635  101639
88370  1831   415  2074  4323  301   39  133   502   97988
91560  1955   377  2015  4153  349   39  223   686  101357
85746  1791   314  1931  3878  297   39  215   449   94660
93855  1891   344  2064  3947  287   39  162   869  103458
97403  1946   382  1937  4029  289   39  122  1164  107311

公式MinMax是

= (data-min)/(max-min)*0.8+0.1

我得到了代码,但规范化数据不是每列

我知道怎么算这个

(first data of RT - min column RT data) / (max column RT- min column RT) * 0.8 + 0.1, etc

下一栏也是如此

(first data of NK - min column NK data) / (max column NK- min column NK) * 0.8 + 0.1

喜欢这个请帮帮我

这是我的代码,但我不明白

from sklearn.preprocessing import Normalizer
from pandas import read_csv
from numpy import set_printoptions
import pandas as pd

#df1=pd.read_csv("dataset.csv")
#print(df1)

namaFile = 'dataset.csv'
nama = ['rt', 'niagak', 'niagab', 'sosum', 'soskhus', 'p', 'tni', 'ik', 'ib', 'TARGET']
dataFrame = read_csv(namaFile, names=nama)
array = dataFrame.values

#membagi array
X = array[:,0:10]
Y = array[:,9]

skala = Normalizer().fit(X)
normalisasiX = skala.transform(X)

#data hasil
print('Normalisasi Data')
set_printoptions(precision = 3)
print(normalisasiX[0:5,:])

用代码手动计数的结果是非常不同的

python csv normalization
3个回答
1
投票

我们可以使用pandas python库。

import pandas as pd

df = pd.read_csv("filename")

norm = (df - df.min()) / (df.max() - df.min() )*0.8 + 0.1

规范将具有规范化的数据帧


0
投票

通过使用sklearn的MinMaxScaler,您可以解决您的问题。

from pandas import read_csv
from sklearn.preprocessing import MinMaxScaler

df = read_csv("your-csv-file")
data = df.values

scaler = MinMaxScaler()
scaler.fit(data)

scaled_data = scaler.transform(data)

0
投票
import matplotlib.pyplot as plt   
import pandas as pd
from sklearn.cluster import KMeans  
from pandas import DataFrame
from sklearn.preprocessing import MinMaxScaler

data = pd.read_csv('Q4dataset.csv')
#print(data)
df = DataFrame(data,columns=['X','Y'])
scaler = MinMaxScaler()
scaler.fit(df)
#print(scaler.transform(df))
minmaxdf = scaler.transform(df)
kmeans = KMeans(n_clusters=2).fit(minmaxdf)
centroids = kmeans.cluster_centers_
plt.scatter(df['X'], df['Y'], c= kmeans.labels_.astype(float), s=30, alpha=1)

你可以使用我上面写的代码。我对二维数据执行了min-max规范化,然后应用K表示聚类算法。确保以.csv格式包含您自己的数据集

© www.soinside.com 2019 - 2024. All rights reserved.