这里我有一个包含时间和三个输入的数据集。这里我用panda来计算时差。
代码是:
data['Time_different'] = pd.to_timedelta(data['time'].astype(str)).diff(-1).dt.total_seconds().div(60)
这是读取每行的时间差。但我想编写一个代码来仅查找具有 X3 值的特定行的时间差。
我尝试使用for循环编写代码。但它不能正常工作。不使用for循环我们可以写代码吗?
正如您在我的图像中看到的,我有三个输入:X1、X2、X3。在这里,当我使用该代码时,它显示了 X1、X2、X3 的时间差。
这里我想写的是获取具有值的 X3 输入的时间差。
time X3
6:00:00 0
7:00:00 2
8:00:00 0
9:00:00 50
10:00:00 0
11:00:00 0
12:00:00 0
13:45:00 0
15:00:00 0
16:00:00 0
17:00:00 0
18:00:00 0
19:00:00 20
那么这里我想跳过X3值为0的时间,只想读取X3值的时间差。
time x3
7:00:00 2(values having)
9:00:00 50
所以时差是
2hrs
然后第二个:
9:00:00 50
19:00:00 20
那么时差是
10 hrs
同样,我想编写代码或我的整个专栏。谁能帮我解决这个问题吗?
输入代码时会得到时间差为负值的错误。
您可以尝试:
完整示例:
data = """time X3
6:00:00 0
7:00:00 2
8:00:00 0
9:00:00 50
10:00:00 0
11:00:00 0
12:00:00 0
13:45:00 0
15:00:00 0
16:00:00 0
17:00:00 0
18:00:00 0
19:00:00 20"""
# Build dataframe from example
df = pd.read_csv(StringIO(data), sep=r'\s{1,}')
df['X1'] = np.random.randint(0,10,len(df)) # Add random values for "X1" column
df['X2'] = np.random.randint(0,10,len(df)) # Add random values for "X2" column
# Convert the time column to datetime object
df.time = pd.to_datetime(df.time, format="%H:%M:%S")
print(df)
# time X3 X1 X2
# 0 1900-01-01 06:00:00 0 5 4
# 1 1900-01-01 07:00:00 2 7 1
# 2 1900-01-01 08:00:00 0 2 8
# 3 1900-01-01 09:00:00 50 1 0
# 4 1900-01-01 10:00:00 0 3 9
# 5 1900-01-01 11:00:00 0 8 4
# 6 1900-01-01 12:00:00 0 0 2
# 7 1900-01-01 13:45:00 0 5 0
# 8 1900-01-01 15:00:00 0 5 7
# 9 1900-01-01 16:00:00 0 0 8
# 10 1900-01-01 17:00:00 0 6 7
# 11 1900-01-01 18:00:00 0 1 5
# 12 1900-01-01 19:00:00 20 4 7
# Compute difference
sub_df = df[df.X3 != 0]
out_values = (sub_df.time.dt.hour - sub_df.shift().time.dt.hour) \
.to_frame() \
.fillna(sub_df.time.dt.hour.iloc[0]) \
.rename(columns={'time': 'out'}) # Rename column
print(out_values)
# out
# 1 7.0
# 3 2.0
# 12 10.0
df = df.join(out_values) # Add out values
print(df)
# time X3 X1 X2 out
# 0 1900-01-01 06:00:00 0 2 9 NaN
# 1 1900-01-01 07:00:00 2 7 4 7.0
# 2 1900-01-01 08:00:00 0 6 6 NaN
# 3 1900-01-01 09:00:00 50 9 1 2.0
# 4 1900-01-01 10:00:00 0 2 9 NaN
# 5 1900-01-01 11:00:00 0 5 3 NaN
# 6 1900-01-01 12:00:00 0 6 4 NaN
# 7 1900-01-01 13:45:00 0 9 3 NaN
# 8 1900-01-01 15:00:00 0 3 0 NaN
# 9 1900-01-01 16:00:00 0 1 8 NaN
# 10 1900-01-01 17:00:00 0 7 5 NaN
# 11 1900-01-01 18:00:00 0 6 7 NaN
# 12 1900-01-01 19:00:00 20 1 5 10.0
这里使用
.fillna(sub_df.time.dt.hour.iloc[0])
将第一个值替换为匹配的小时数(因为减 0 没有任何作用)。您可以为 fillna()
中的值定义自己的规则。
time X3
6:00:00 0
7:00:00 2
8:00:00 0
9:00:00 50
10:00:00 0
11:00:00 0
12:00:00 0
13:45:00 0
15:00:00 0
16:00:00 0
17:00:00 0
18:00:00 0
19:00:00 20