我如何将mnist数据转换为RGB格式?

问题描述 投票:2回答:3

我正在尝试将MNIST数据集转换为RGB格式,每个图像的实际形状是(28,28),但是我需要(28,28,3)。

import numpy as np
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, _), (x_test, _) = mnist.load_data()

X = np.concatenate([x_train, x_test])
X = X / 127.5 - 1

X.reshape((70000, 28, 28, 1))

tf.image.grayscale_to_rgb(
    X,
    name=None
)

但是我收到以下错误:

ValueError: Dimension 1 in both shapes must be equal, but are 84 and 3. Shapes are [28,84] and [28,3].
python numpy tensorflow keras tensorflow-datasets
3个回答
1
投票

您应该将变形的3D [28x28x1]图像存储在数组中:

X = X.reshape((70000, 28, 28, 1))

[转换时,将另一个数组设置为tf.image.grayscale_to_rgb()函数的返回值:

X3 = tf.image.grayscale_to_rgb(
X,
name=None
)

最后,用matplotlibtf.session()从所得张量图像中绘制出一个例子:

import matplotlib.pyplot as plt

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    image_to_plot = sess.run(image)
    plt.figure()
    plt.imshow(image_to_plot)
    plt.grid(False)

完整代码:


import numpy as np
import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, _), (x_test, _) = mnist.load_data()

X = np.concatenate([x_train, x_test])
X = X / 127.5 - 1

# Set reshaped array to X 
X = X.reshape((70000, 28, 28, 1))

# Convert images and store them in X3
X3 = tf.image.grayscale_to_rgb(
    X,
    name=None
)

# Get one image from the 3D image array to var. image
image = X3[0,:,:,:]

# Plot it out with matplotlib.pyplot
import matplotlib.pyplot as plt

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    image_to_plot = sess.run(image)
    plt.figure()
    plt.imshow(image_to_plot)
    plt.grid(False)

0
投票

如果在tf.image.grayscale_to_rgb之前打印X的形状,您将看到输出尺寸为(70000,28,28)。 tf.image.grayscale的输入的最终尺寸必须为1。

展开X的最终尺寸以使其与功能兼容

tf.image.grayscale_to_rgb(tf.expand_dims(X, axis=3))

0
投票

除了@DMolony和@ Aqwis01答案,另一个简单的解决方案可能是使用numpy.repeat方法多次复制张量的最后一个维度:

X = X.reshape((70000, 28, 28, 1))
X = X.repeat(3, -1)  # repeat the last (-1) dimension three times
X_t = tf.convert_to_tensor(X)
assert X_t.shape == (70000, 28, 28, 3)
© www.soinside.com 2019 - 2024. All rights reserved.