我需要最小化渔民信息决定因素,以获得一些优化的偏航速率,使 AUV 模型遵循最佳路径。
最小化函数包含一些非线性约束,fmincon 函数返回特定迭代的最佳偏航率和最佳速度。我不知道如何定义 nonlcon 约束函数,因为它必须采用 fmincon 函数未返回但可从其他一些 matlab 文件获取的某些参数。 () ()
这是我写的 MATLAB 代码
% Given parameters
function [optimized_yaw_rates, optimized_speed, max_objective_value] = target_optimize(x_k1, x0, yaw, x_tilde, x_nominal, distances, psi0, v0, m, sigma, target)
% Adjust as needed
% m = length(x_tilde); % Assuming u_rates is the vector of yaw rates obtained
% Define equality constraint: p(k+1) = p(k) + sum(u(i))
% Objective function (negative since fmincon minimizes)
objective = @(uv) -detFIMCostFunction(uv(1), uv(2), sigma);
rb = pi/9;
% Constraints (if any, e.g., bounds on yaw rates)
lb = [-rb, 0]; % Lower bounds for [u, v]
ub = [rb, 1.5]; % Upper bounds for [u, v]
% Initial guess (you can use the obtained yaw rates as the starting point)
initial_guess = [psi0, v0]; % Initial guess for [u, v]
% Initialize max_objective_value
max_objective_value = -Inf;
% Call fmincon
options = optimoptions(@fmincon, ...
'MaxFunctionEvaluations', 1e6, ...
'MaxIterations', 1e6, ...
'TolX', 1e-6, ...
'TolFun', 1e-6, ...
'Algorithm', 'interior-point', ...
'StepTolerance', 1e-6, ...
'ConstraintTolerance', 1e-6);
[optimized_params, max_objective_value] = fmincon(objective, initial_guess, [], [], [],[], lb, ub, @nonlcon, options);
optimized_yaw_rates = optimized_params(1);
optimized_speed = optimized_params(2);
disp('Optimized Yaw Rates:');
disp(optimized_yaw_rates);
disp('Maximum Objective Value:');
disp(-max_objective_value); % Note the negative sign here
% Define the nonlinear constraint function for fmincon
function [c, ceq] = nonlcon(x_k1,x0,yaw)
p0 = x0(1:2);
psi0 = x0(3);
p_k1 = x_k1(1:2);
psi_k1 = x_k1(3);
ceq(1) = p_k1 - p0 - 1.5*[cos(psi_k1); sin(psi_k1)];
ceq(2) = psi_k1 - psi0 - sum(yaw);
c = []; % Compute nonlinear inequalities.
end
% Define the cost function for |FIMp|^2
function cost = detFIMCostFunction(u, v, sigma)
x_tilde_func = matlabFunction(x_tilde);
distances_func = matlabFunction(distances);
fim = [0, 0; 0, 0];
P0 = [1, 0; 0, 1];
x_tilde_numeric = x_tilde_func(u, v);
distances_numeric = distances_func(u, v);
for i = 1:m
fim = fim + 1/(distances_numeric(i)^2) * [x_tilde_numeric(1, i)^2, x_tilde_numeric(1, i)*x_tilde_numeric(2, i); x_tilde_numeric(1, i)*x_tilde_numeric(2, i), x_tilde_numeric(2, i)^2];
end
cost = log((1/sigma^2)*det(fim + inv(P0)));
end
end
我尝试编写带参数的非线性约束函数,但当我将其放入 fmincon(..,..,.. nonlcon,..) 函数时出现错误,提示输入参数不足。
错误是因为当
fmincon
调用 nonlcon
时,它只传递它正在查看的当前 x
向量。当将非线性函数插入 fmincon
时,您必须修复剩余的参数。假设 x_k1
是正在优化的变量,您可以修改您的 fmincon
调用,如下所示
[optimized_params, max_objective_value] = fmincon(objective, initial_guess, [], [], [],[], lb, ub, @(x) nonlcon(x,x0,yaw), options);