如何使用EmguCV检测自定义对象

问题描述 投票:0回答:1

我正在研究一些物体检测代码。因此,我进行了培训,并从tensorflow获得了.pb和graph.pbtxt文件。接下来要做的是python代码,它使用opencv for Python根据这两个文件执行对象检测。这是我的python脚本,效果很好:

import cv2 as cv

cvNet = cv.dnn.readNetFromTensorflow('frozen_inference_graph.pb', 'graph.pbtxt')

img = cv.imread('75.png')
rows = img.shape[0]
cols = img.shape[1]
cvNet.setInput(cv.dnn.blobFromImage(img, size=(300, 300), swapRB=True, crop=False))
cvOut = cvNet.forward()
print(rows)
print(cols)

for detection in cvOut[0,0,:,:]:
    print(type(cvOut[0,0,:,:]))
    score = float(detection[2])
    if score > 0.1:
        left = detection[3] * cols
        top = detection[4] * rows
        right = detection[5] * cols
        bottom = detection[6] * rows
        cv.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), (0, 0, 255), thickness=2)
        print('true')
    print(score)

cv.imshow('img', cv.resize(img, None, fx=0.3, fy=0.3))
cv.waitKey()

但是,我需要使用EmguCV库(使用传统的OpenCV进行包装),使用.NET(C#)完成相同的代码。

这里是代码的一部分,我已经设法写了:

private bool RecognizeCO(string fileName)
{
            Image<Bgr, byte> img = new Image<Bgr, byte>(fileName);

            int cols = img.Width;

            int rows = img.Height;

            imageBox2.Image = img;

            Net netcfg = DnnInvoke.ReadNetFromTensorflow("CO.pb", "graph.pbtxt");

            netcfg.SetInput(DnnInvoke.BlobFromImage(img));

            Mat mat = netcfg.Forward();

            return false;
}

[不幸的是,我不知道在那之后该怎么做...。实际上,我在此C#代码中获得了相同的结果,就像在Python中一样。我知道,我只能从C#调用python脚本,但是我确实需要使用EmguCV在C#中完成此代码。请帮我!预先感谢您的帮助!

c# python opencv tensorflow emgucv
1个回答
0
投票

所以,最终我设法结束了该代码...解决方案非常简单:在获取mat变量后,我们可以从Data中获取Mat作为float [,,,]数组:float[,,,] flt = (float[,,,])mat.GetData();或仅使用一维数组:float[] flt = (float[])mat.GetData(jagged:false)(但我更喜欢前一个)

比,只是循环抛出该数组:

                for (int x = 0; x < flt.GetLength(2); x++)
                {
                    if (flt[0, 0, x, 2] > 0.1)
                    {
                        int left = Convert.ToInt32(flt[0, 0, x, 3] * cols);
                        int top = Convert.ToInt32(flt[0, 0, x, 4] * rows);
                        int right = Convert.ToInt32(flt[0, 0, x, 5] * cols);
                        int bottom = Convert.ToInt32(flt[0, 0, x, 6] * rows);

                        image1.Draw(new Rectangle(left, top, right - left, bottom - top), new Bgr(0, 0, 255), 2);
                    }
                }

最后,我们可以保存该图像:

image1.Save("testing-1.png");

因此,结果代码将看起来像:

            using (Image<Bgr, byte> image1 = new Image<Bgr, byte>("testing.png"))
            {
                int interception = 0;

                int cols = image1.Width;

                int rows = image1.Height;

                Net netcfg = DnnInvoke.ReadNetFromTensorflow(Directory.GetCurrentDirectory() + @"\fldr\CO.pb", Directory.GetCurrentDirectory() + @"\fldr\graph.pbtxt");

                netcfg.SetInput(DnnInvoke.BlobFromImage(image1.Mat, 1, new System.Drawing.Size(300, 300), default(MCvScalar), true, false));

                Mat mat = netcfg.Forward();

                float[,,,] flt = (float[,,,])mat.GetData();

                for (int x = 0; x < flt.GetLength(2); x++)
                {
                    if (flt[0, 0, x, 2] > 0.1)
                    {
                        int left = Convert.ToInt32(flt[0, 0, x, 3] * cols);
                        int top = Convert.ToInt32(flt[0, 0, x, 4] * rows);
                        int right = Convert.ToInt32(flt[0, 0, x, 5] * cols);
                        int bottom = Convert.ToInt32(flt[0, 0, x, 6] * rows);

                        image1.Draw(new Rectangle(left, top, right - left, bottom - top), new Bgr(0, 0, 255), 2);
                    }
                }

                image1.Save("testing-1.png");
            }
© www.soinside.com 2019 - 2024. All rights reserved.