我正在尝试使用以下代码绘制 k 的肘部:
load CSDmat %mydata
for k = 2:20
opts = statset('MaxIter', 500, 'Display', 'off');
[IDX1,C1,sumd1,D1] = kmeans(CSDmat,k,'Replicates',5,'options',opts,'distance','correlation');% kmeans matlab
[yy,ii] = min(D1'); %% assign points to nearest center
distort = 0;
distort_across = 0;
clear clusts;
for nn=1:k
I = find(ii==nn); %% indices of points in cluster nn
J = find(ii~=nn); %% indices of points not in cluster nn
clusts{nn} = I; %% save into clusts cell array
if (length(I)>0)
mu(nn,:) = mean(CSDmat(I,:)); %% update mean
%% Compute within class distortion
muB = repmat(mu(nn,:),length(I),1);
distort = distort+sum(sum((CSDmat(I,:)-muB).^2));
%% Compute across class distortion
muB = repmat(mu(nn,:),length(J),1);
distort_across = distort_across + sum(sum((CSDmat(J,:)-muB).^2));
end
end
%% Set distortion as the ratio between the within
%% class scatter and the across class scatter
distort = distort/(distort_across+eps);
bestD(k)=distort;
bestC=clusts;
end
figure; plot(bestD);
bestD
(簇内方差/簇间方差)的值为
[
0.401970132754914
0.193697163350293
0.119427184084282
0.0872681777446508
0.0687948264457301
0.0566215549396577
0.0481117619129058
0.0420491551659459
0.0361696583755145
0.0320384092689509
0.0288948343304147
0.0262373245283877
0.0239462330460614
0.0218350896369853
0.0201506779033703
0.0186757121130685
0.0176258625858971
0.0163239661159014
0.0154933431470081
]
该代码改编自 Lihi Zelnik-Manor,2005 年 3 月,加州理工学院。
簇内方差与簇间方差的绘图比是一条平滑曲线,其拐点像曲线一样平滑,绘制上面给出的
bestD
数据。我们如何找到此类图的拐点?
我认为最好只使用“类内失真”作为优化参数:
%% Compute within class distortion
muB = repmat(mu(nn,:),length(I),1);
distort = distort+sum(sum((CSDmat(I,:)-muB).^2));
使用此而不将此值除以“ Distact_across”。如果你计算它的“导数”:
unexplained_error = within_class_distortion;
derivative = diff(unexplained_error);
plot(derivative)
导数(k)告诉您通过添加新簇,无法解释的误差减少了多少。我建议您当此错误的减少量小于您获得的第一次减少量的十倍时停止添加簇。
for (i=1:length(derivative))
if (derivative(i) < derivative(1)/10)
break
end
end
k_opt = i+1;
事实上,获得最佳簇数的方法取决于应用程序,但我认为您可以使用此建议获得良好的 k 值。
如果您正在寻找最佳“K”,我建议使用“evalclusters”功能。 阅读 此 MATLAB 帮助网站