R:使用二元调度变量优化成本函数?

问题描述 投票:0回答:1

下面详细介绍了我无法解决的优化问题的简化版本。

目标是最大限度地降低通过卡车运输水的组织的成本函数,并使用该公式生成最小化成本的卡车交付计划。

该组织全年为约10,000个家用水箱提供水。

这些坦克的最大容量为300加仑,最小期望限制为100加仑 - 也就是说,坦克应该在低于100之前加满300。

例如,如果第2周的油箱为115加仑,并且估计在第3周使用20加仑,则需要在第3周重新加油。

费用包括:

  1. 每次送货费10美元
  2. 每周卡车成本。卡车的每周成本为1,000美元。因此,如果200个交货在一个星期内,成本是3,000美元(200 * 10 + 1000 * 1)。如果201交付,成本显着跳跃到4,010美元(201 * 10 + 1000 * 2)

不同家庭和数周的用水量不同。高峰用水量在夏季。如果我们在达到100加仑最低限度之前盲目地遵循规则重新填充,那么如果交付分散到夏季的“肩膀”,卡车的峰值数量可能会高于所需的数量。

我创建了每个家庭每周每周用水量的估算值。此外,我像家庭一样分组,以减少优化问题的规模(约10万户家庭减少到8组)。

重申目标:此优化程序的输出应为:每个家庭组的交付与否,一年中52周的每一周。

简化数据(即8组和12周):

df.usage <-  structure(list(reduction.group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 
                                                1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 
                                                3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 
                                                5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
                                                7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 
                                                8, 8, 8), week = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 
                                                                   2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
                                                                   10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 
                                                                   5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
                                                                   12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 
                                                                   7, 8, 9, 10, 11, 12), water_usage = c(46, 50, 42, 47, 43, 39, 
                                                                                                         38, 32, 42, 36, 42, 30, 46, 50, 42, 47, 43, 39, 38, 32, 42, 36, 
                                                                                                         42, 30, 46, 50, 43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 46, 50, 
                                                                                                         43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 29, 32, 27, 30, 27, 25, 
                                                                                                         24, 20, 26, 23, 27, 19, 29, 32, 27, 30, 27, 25, 24, 20, 26, 23, 
                                                                                                         27, 19, 29, 32, 27, 30, 28, 25, 25, 21, 27, 23, 27, 19, 29, 32, 
                                                                                                         27, 30, 28, 25, 25, 21, 27, 23, 27, 20), tank.level.start = c(115, 
                                                                                                                                                                        NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 165, NA, NA, NA, 
                                                                                                                                                                        NA, NA, NA, NA, NA, NA, NA, NA, 200, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                        NA, NA, NA, NA, NA, 215, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                        NA, NA, 225, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 230, 
                                                                                                                                                                        NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 235, NA, NA, NA, 
                                                                                                                                                                        NA, NA, NA, NA, NA, NA, NA, NA, 240, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                        NA, NA, NA, NA, NA)), row.names = c(NA, 96L), class = "data.frame")

坦克级别补充规则

这是一个嵌套的循环集,用于通过“重新填充”逻辑确定随时间变化的储罐水平:

library(dplyr)

reduction.groups <- unique(df.usage$reduction.group)
df.after.refill.logic <- list()

for (i in reduction.groups) {

  temp <- df.usage %>% filter(reduction.group == i)
  temp$refilled <- 0
  temp$level <- temp$tank.level.start

  n <- nrow(temp)

  if (n > 1) for (j in 2:n) {
    temp$level[j] <- ( temp$level[j-1] - temp$water_usage[j] )
    if(temp$level[j] < 100) {
      temp$level[j] <- 300
      temp$refilled[j] <- 1
    }
  }
  df.after.refill.logic <- bind_rows(df.after.refill.logic, temp)
}

决策变量

一年中的每个星期每个小组交付与否(二进制)

约束

没有部分卡车:卡车数量必须是整数

卡车容量:卡车交付/周<= 200

坦克不能低于100加仑:level> = 100

交货必须是二进制的

常量

1600 # truck_weekly_costs
10 # cost_per_delivery
200 # weekly_delivery_capacity_per_truck

示例成本函数

weekly_cost_function <- function(i){
  cost <- (ceiling(sum(i)/200)) * 1600 + (sum(i) * 10)
  cost
}

**example cost for one week with i = 199 deliveries:**
weekly_cost_function(i = 199)
[1] 3590

尝试使用OMPR建模问题

下面是使用OMPR包创建的模型的开头(虽然使用另一个包可以):

我对如何使用上面的数据进行设置感到困惑。三个明显的问题:

  1. 如何在OMPR代码中包含示例成本函数中表示的上限逻辑?
  2. 下面的模型没有将数据合并到上面的数据框中(df.usage)。目标是优化器根据四个变量(reduction.group,week,water_usage,tank_level_start)以及常量生成“重新填充”和“水平”变量的值。
  3. 我在上面的“确定水箱水平”循环中写的补充逻辑没有合并。是否应该作为约束添加?如果是这样,怎么样?
num_groups <- length(unique(df.usage$reduction.group))
num_weeks <- length(unique(df.usage$week))

MIPModel() %>%
  add_variable(x[i,w],                         # create decision variable: deliver or not by...
               i = 1:num_groups,               # group,
               w = 1:num_weeks,                # in week.
               type = "integer",               # Integers only
               lb = 0, ub = 1) %>%             # between 0 and 1, inclusive 
  set_objective(sum_expr( x[i,w]/200 * 1600 + x[i,w] * 10,
                          i = 1:num_groups, 
                          w = 1:num_weeks),
                sense = "min") %>%
  # add constraint to achieve ceiling(x[i,w]/200), or should this be in the set_objective call?
  add_constraint(???) %>%
  solve_model(with_ROI("glpk"))

期望的输出

以下是head()输出的示例:


 reduction.group   week   water.usage  refill   level
               1      1            46       0     115
               1      2            50       1     300
               1      3            42       0     258
               1      4            47       0     211
               1      5            43       0     168
               1      6            39       0     129

重要的是,refill值将是最小化成本函数并保持level高于100的任何值。

r optimization linear-programming nonlinear-optimization lpsolve
1个回答
4
投票

ceiling函数是一个困难的非线性函数(不可微分,不连续),应该不惜一切代价避免。但是,它可以使用常规整数变量很容易地建模。对于非负变量x >= 0,我们可以制定

y = ceiling(x)

x <= y <= x+1
y integer

这是完全线性的,在OMPR(或任何其他LP / MIP工具)中实现是微不足道的。


细节笔记。这个公式将允许模型在y=x假定整数值的特殊情况下选择y=x+1x。如果你想对这种情况挑剔,你可以这样做:

x+0.0001 <= y <= x+1
y integer

我不担心这个。


2
投票

有了天花板功能,对于爬山优化器来说,这似乎是一个难题。我认为遗传算法更适合。每周每个房子的交付或不交付矩阵都是一个很好的基因组。

library(dplyr)

# Original given sample input data.
df.usage <-  structure(list(reduction.group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 
                                                1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 
                                                3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 
                                                5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
                                                7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 
                                                8, 8, 8), week = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 
                                                                   2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
                                                                   10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 
                                                                   5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
                                                                   12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 
                                                                   7, 8, 9, 10, 11, 12), water_usage = c(46, 50, 42, 47, 43, 39, 
                                                                                                         38, 32, 42, 36, 42, 30, 46, 50, 42, 47, 43, 39, 38, 32, 42, 36, 
                                                                                                         42, 30, 46, 50, 43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 46, 50, 
                                                                                                         43, 47, 43, 39, 38, 32, 42, 36, 42, 30, 29, 32, 27, 30, 27, 25, 
                                                                                                         24, 20, 26, 23, 27, 19, 29, 32, 27, 30, 27, 25, 24, 20, 26, 23, 
                                                                                                         27, 19, 29, 32, 27, 30, 28, 25, 25, 21, 27, 23, 27, 19, 29, 32, 
                                                                                                         27, 30, 28, 25, 25, 21, 27, 23, 27, 20), tank.level.start = c(115, 
                                                                                                                                                                       NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 165, NA, NA, NA, 
                                                                                                                                                                       NA, NA, NA, NA, NA, NA, NA, NA, 200, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                       NA, NA, NA, NA, NA, 215, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                       NA, NA, 225, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 230, 
                                                                                                                                                                       NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 235, NA, NA, NA, 
                                                                                                                                                                       NA, NA, NA, NA, NA, NA, NA, NA, 240, NA, NA, NA, NA, NA, NA, 
                                                                                                                                                                       NA, NA, NA, NA, NA)), row.names = c(NA, 96L), class = "data.frame")

# Orginal given delivery cost function.
weekly_cost_function <- function(i){
  cost <- (ceiling(sum(i)/200)) * 1600 + (sum(i) * 10)
  cost
}

# Calculate the list of houses (reduction.groups) and number of delivery weeks (weeks).
reduction.groups <- unique(df.usage$reduction.group)
temp             <- df.usage %>% filter(reduction.group == 1)
weeks            <- nrow(temp)

# The genome consists of a matrix representing deliver-or-not to each house each week.
create_random_delivery_schedule <- function(number_of_houses, number_of_weeks, prob = NULL) {
  matrix(sample(c(0, 1), number_of_houses * number_of_weeks, replace = TRUE, prob = prob), number_of_houses)
}

# Generate a population of random genes.
population_size <- 100
schedules <- replicate(population_size, create_random_delivery_schedule(length(reduction.groups), weeks), simplify = FALSE)

# Calculate fitness of an individual.
fitness <- function(schedule) {

  # Fitness is related to delivery cost.
  delivery_cost <- sum(apply(schedule, 2, weekly_cost_function))

  # If the schedule allows a tank level to drop below 100, apply a fitness penalty.
  # Don't make the fitness penalty too large.
  # If the fitness penalty is large enough to be catastrophic (essentially zero children)
  # then solutions that are close to optimal will also be likely to generate children
  # who fall off the catastropy cliff so there will be a selective pressure away from
  # close to optimal solutions.
  # However, if your optimizer generates a lot of infeasible solutions raise the penalty.
  for (i in reduction.groups) {

    temp <- df.usage %>% filter(reduction.group == i)
    temp$level <- temp$tank.level.start

    if (weeks > 1) for (j in 2:weeks) {
      if (1 == schedule[i,j]) {
        temp$level[j] <- 300
      } else {
        temp$level[j] <- ( temp$level[j-1] - temp$water_usage[j] )

        if (100 > temp$level[j]) {
          # Fitness penalty.
          delivery_cost <- delivery_cost + 10 * (100 - temp$level[j])
        }
      }
    }
  }

  # Return one over delivery cost so that lower cost is higher fitness.
  1 / delivery_cost
}

# Generate a new schedule by combining two parents chosen randomly weighted by fitness.
make_baby <- function(population_fitness) {

  # Choose some parents.
  parents <- sample(length(schedules), 2, prob = population_fitness)

  # Get DNA from mommy.
  baby <- schedules[[parents[1]]]

  # Figure out what part of the DNA to get from daddy.
  house_range <- sort(sample(length(reduction.groups), 2))
  week_range  <- sort(sample(weeks, 2))

  # Get DNA from daddy.
  baby[house_range[1]:house_range[2],week_range[1]:week_range[2]] <- schedules[[parents[2]]][house_range[1]:house_range[2],week_range[1]:week_range[2]]

  # Mutate, 1% chance of flipping each bit.
  changes <- create_random_delivery_schedule(length(reduction.groups), weeks, c(0.99, 0.01))
  baby <- apply(xor(baby, changes), c(1, 2), as.integer)
}

lowest_cost <<- Inf

# Loop creating and evaluating generations.
for (ii in 1:100) {
  population_fitness <- lapply(schedules, fitness)
  lowest_cost_this_generation <- 1 / max(unlist(population_fitness))
  print(sprintf("lowest cost = %f", lowest_cost_this_generation))

  if (lowest_cost_this_generation < lowest_cost) {
    lowest_cost <<- lowest_cost_this_generation
    best_baby   <<- schedules[[which.max(unlist(population_fitness))]]
  }

  schedules <<- replicate(population_size, make_baby(population_fitness), simplify = FALSE)
}
© www.soinside.com 2019 - 2024. All rights reserved.